/* lzo1a.c -- implementation of the LZO1A algorithm This file is part of the LZO real-time data compression library. Copyright (C) 1996-2014 Markus Franz Xaver Johannes Oberhumer All Rights Reserved. The LZO library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The LZO library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the LZO library; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. Markus F.X.J. Oberhumer <markus@oberhumer.com> http://www.oberhumer.com/opensource/lzo/ */ #include "lzo_conf.h" #include "lzo/lzo1a.h" /*********************************************************************** // The next two defines can be changed to customize LZO1A. // The default version is LZO1A-5/1. ************************************************************************/ /* run bits (3 - 5) - the compressor and the decompressor * must use the same value. */ #if !defined(RBITS) # define RBITS 5 #endif /* compression level (1 - 9) - this only affects the compressor. * 1 is fastest, 9 is best compression ratio */ #if !defined(CLEVEL) # define CLEVEL 1 /* fastest by default */ #endif /* Collect statistics */ #if 0 && !defined(LZO_COLLECT_STATS) # define LZO_COLLECT_STATS 1 #endif /*********************************************************************** // You should not have to change anything below this line. ************************************************************************/ /* check configuration */ #if (RBITS < 3 || RBITS > 5) # error "invalid RBITS" #endif #if (CLEVEL < 1 || CLEVEL > 9) # error "invalid CLEVEL" #endif /*********************************************************************** // internal configuration // all of these affect compression only ************************************************************************/ /* choose the hashing strategy */ #ifndef LZO_HASH #define LZO_HASH LZO_HASH_LZO_INCREMENTAL_A #endif #define D_INDEX1(d,p) d = DM(DMUL(0x21,DX2(p,5,5)) >> 5) #define D_INDEX2(d,p) d = d ^ D_MASK #include "lzo1a_de.h" #include "stats1a.h" /* check other constants */ #if (LBITS < 5 || LBITS > 8) # error "invalid LBITS" #endif #if (LZO_COLLECT_STATS) static lzo1a_stats_t lzo_statistics; lzo1a_stats_t *lzo1a_stats = &lzo_statistics; # define lzo_stats lzo1a_stats #endif /*********************************************************************** // get algorithm info, return memory required for compression ************************************************************************/ LZO_EXTERN(lzo_uint) lzo1a_info ( int *rbits, int *clevel ); LZO_PUBLIC(lzo_uint) lzo1a_info ( int *rbits, int *clevel ) { if (rbits) *rbits = RBITS; if (clevel) *clevel = CLEVEL; return D_SIZE * lzo_sizeof(lzo_bytep); } /*********************************************************************** // LZO1A decompress a block of data. // // Could be easily translated into assembly code. ************************************************************************/ LZO_PUBLIC(int) lzo1a_decompress ( const lzo_bytep in , lzo_uint in_len, lzo_bytep out, lzo_uintp out_len, lzo_voidp wrkmem ) { lzo_bytep op; const lzo_bytep ip; lzo_uint t; const lzo_bytep m_pos; const lzo_bytep const ip_end = in + in_len; LZO_UNUSED(wrkmem); op = out; ip = in; while (ip < ip_end) { t = *ip++; /* get marker */ LZO_STATS(lzo_stats->marker[t]++); if (t == 0) /* a R0 literal run */ { t = *ip++; if (t >= R0FAST - R0MIN) /* a long R0 run */ { t -= R0FAST - R0MIN; if (t == 0) t = R0FAST; else { #if 0 t = 256u << ((unsigned) t); #else /* help the optimizer */ lzo_uint tt = 256; do tt <<= 1; while (--t > 0); t = tt; #endif } MEMCPY8_DS(op,ip,t); continue; } t += R0MIN; goto literal; } else if (t < R0MIN) /* a short literal run */ { literal: MEMCPY_DS(op,ip,t); /* after a literal a match must follow */ while (ip < ip_end) { t = *ip++; /* get R1 marker */ if (t >= R0MIN) goto match; /* R1 match - a context sensitive 3 byte match + 1 byte literal */ assert((t & OMASK) == t); m_pos = op - MIN_OFFSET; m_pos -= t | (((lzo_uint) *ip++) << OBITS); assert(m_pos >= out); assert(m_pos < op); *op++ = m_pos[0]; *op++ = m_pos[1]; *op++ = m_pos[2]; *op++ = *ip++; } } else /* a match */ { match: /* get match offset */ m_pos = op - MIN_OFFSET; m_pos -= (t & OMASK) | (((lzo_uint) *ip++) << OBITS); assert(m_pos >= out); assert(m_pos < op); /* get match len */ if (t < ((MSIZE - 1) << OBITS)) /* a short match */ { t >>= OBITS; *op++ = *m_pos++; *op++ = *m_pos++; MEMCPY_DS(op,m_pos,t); } else /* a long match */ { #if (LBITS < 8) t = (MIN_MATCH_LONG - THRESHOLD) + ((lzo_uint)(*ip++) & LMASK); #else t = (MIN_MATCH_LONG - THRESHOLD) + (lzo_uint)(*ip++); #endif *op++ = *m_pos++; *op++ = *m_pos++; MEMCPY_DS(op,m_pos,t); #if (LBITS < 8) /* a very short literal following a long match */ t = ip[-1] >> LBITS; if (t) do *op++ = *ip++; while (--t); #endif } } } *out_len = pd(op, out); /* the next line is the only check in the decompressor */ return (ip == ip_end ? LZO_E_OK : (ip < ip_end ? LZO_E_INPUT_NOT_CONSUMED : LZO_E_INPUT_OVERRUN)); } /*********************************************************************** // LZO1A compress a block of data. // // I apologize for the spaghetti code, but it really helps the optimizer. ************************************************************************/ #include "lzo1a_cr.ch" static int do_compress ( const lzo_bytep in , lzo_uint in_len, lzo_bytep out, lzo_uintp out_len, lzo_voidp wrkmem ) { const lzo_bytep ip; #if defined(__LZO_HASH_INCREMENTAL) lzo_xint dv; #endif const lzo_bytep m_pos; lzo_bytep op; const lzo_bytep const ip_end = in+in_len - DVAL_LEN - MIN_MATCH_LONG; const lzo_bytep const in_end = in+in_len - DVAL_LEN; const lzo_bytep ii; lzo_dict_p const dict = (lzo_dict_p) wrkmem; const lzo_bytep r1 = ip_end; /* pointer for R1 match (none yet) */ #if (LBITS < 8) const lzo_bytep im = ip_end; /* pointer to last match start */ #endif #if !defined(NDEBUG) const lzo_bytep m_pos_sav; #endif op = out; ip = in; ii = ip; /* point to start of current literal run */ /* init dictionary */ #if (LZO_DETERMINISTIC) BZERO8_PTR(wrkmem,sizeof(lzo_dict_t),D_SIZE); #endif DVAL_FIRST(dv,ip); UPDATE_D(dict,0,dv,ip,in); ip++; DVAL_NEXT(dv,ip); do { LZO_DEFINE_UNINITIALIZED_VAR(lzo_uint, m_off, 0); lzo_uint dindex; DINDEX1(dindex,ip); GINDEX(m_pos,m_off,dict,dindex,in); if (LZO_CHECK_MPOS_NON_DET(m_pos,m_off,in,ip,MAX_OFFSET)) goto literal; if (m_pos[0] == ip[0] && m_pos[1] == ip[1] && m_pos[2] == ip[2]) goto match; DINDEX2(dindex,ip); GINDEX(m_pos,m_off,dict,dindex,in); if (LZO_CHECK_MPOS_NON_DET(m_pos,m_off,in,ip,MAX_OFFSET)) goto literal; if (m_pos[0] == ip[0] && m_pos[1] == ip[1] && m_pos[2] == ip[2]) goto match; goto literal; literal: UPDATE_I(dict,0,dindex,ip,in); if (++ip >= ip_end) break; continue; match: UPDATE_I(dict,0,dindex,ip,in); #if !defined(NDEBUG) && (LZO_DICT_USE_PTR) assert(m_pos == NULL || m_pos >= in); m_pos_sav = m_pos; #endif m_pos += 3; { /* we have found a match (of at least length 3) */ #if !defined(NDEBUG) && !(LZO_DICT_USE_PTR) assert((m_pos_sav = ip - m_off) == (m_pos - 3)); #endif assert(m_pos >= in); assert(ip < ip_end); /* 1) store the current literal run */ if (pd(ip,ii) > 0) { lzo_uint t = pd(ip,ii); if (ip - r1 == MIN_MATCH + 1) { /* Code a context sensitive R1 match. * This is tricky and somewhat difficult to explain: * multiplex a literal run of length 1 into the previous * short match of length MIN_MATCH. * The key idea is: * - after a short run a match MUST follow * - therefore the value m = 000 in the mmmooooo marker is free * - use 000ooooo to indicate a MIN_MATCH match (this * is already coded) plus a 1 byte literal */ assert(t == 1); /* modify marker byte */ assert((op[-2] >> OBITS) == (MIN_MATCH - THRESHOLD)); op[-2] &= OMASK; assert((op[-2] >> OBITS) == 0); /* copy 1 literal */ *op++ = *ii; LZO_STATS(lzo_stats->r1_matches++); r1 = ip; /* set new R1 pointer */ } else if (t < R0MIN) { /* inline the copying of a short run */ #if (LBITS < 8) if (t < (1 << (8-LBITS)) && ii - im >= MIN_MATCH_LONG) { /* Code a very short literal run into the * previous long match length byte. */ LZO_STATS(lzo_stats->lit_runs_after_long_match++); LZO_STATS(lzo_stats->lit_run_after_long_match[t]++); assert(ii - im <= MAX_MATCH_LONG); assert((op[-1] >> LBITS) == 0); op[-1] = LZO_BYTE(op[-1] | (t << LBITS)); MEMCPY_DS(op, ii, t); } else #endif { LZO_STATS(lzo_stats->lit_runs++); LZO_STATS(lzo_stats->lit_run[t]++); *op++ = LZO_BYTE(t); MEMCPY_DS(op, ii, t); r1 = ip; /* set new R1 pointer */ } } else if (t < R0FAST) { /* inline the copying of a short R0 run */ LZO_STATS(lzo_stats->r0short_runs++); *op++ = 0; *op++ = LZO_BYTE(t - R0MIN); MEMCPY_DS(op, ii, t); r1 = ip; /* set new R1 pointer */ } else op = store_run(op,ii,t); } #if (LBITS < 8) im = ip; #endif /* 2) compute match len */ ii = ip; /* point to start of current match */ /* we already matched MIN_MATCH bytes, * m_pos also already advanced MIN_MATCH bytes */ ip += MIN_MATCH; assert(m_pos < ip); /* try to match another MIN_MATCH_LONG - MIN_MATCH bytes * to see if we get a long match */ #define PS *m_pos++ != *ip++ #if (MIN_MATCH_LONG - MIN_MATCH == 2) /* MBITS == 2 */ if (PS || PS) #elif (MIN_MATCH_LONG - MIN_MATCH == 6) /* MBITS == 3 */ if (PS || PS || PS || PS || PS || PS) #elif (MIN_MATCH_LONG - MIN_MATCH == 14) /* MBITS == 4 */ if (PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS) #elif (MIN_MATCH_LONG - MIN_MATCH == 30) /* MBITS == 5 */ if (PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS || PS) #else # error "MBITS not yet implemented" #endif { /* we've found a short match */ lzo_uint m_len; /* 2a) compute match parameters */ assert(ip-m_pos == (int)m_off); --ip; /* ran one too far, point back to non-match */ m_len = pd(ip, ii); assert(m_len >= MIN_MATCH_SHORT); assert(m_len <= MAX_MATCH_SHORT); assert(m_off >= MIN_OFFSET); assert(m_off <= MAX_OFFSET); assert(ii-m_off == m_pos_sav); assert(lzo_memcmp(m_pos_sav,ii,m_len) == 0); m_off -= MIN_OFFSET; /* 2b) code a short match */ /* code short match len + low offset bits */ *op++ = LZO_BYTE(((m_len - THRESHOLD) << OBITS) | (m_off & OMASK)); /* code high offset bits */ *op++ = LZO_BYTE(m_off >> OBITS); #if (LZO_COLLECT_STATS) lzo_stats->short_matches++; lzo_stats->short_match[m_len]++; if (m_off < OSIZE) lzo_stats->short_match_offset_osize[m_len]++; if (m_off < 256) lzo_stats->short_match_offset_256[m_len]++; if (m_off < 1024) lzo_stats->short_match_offset_1024[m_len]++; #endif /* 2c) Insert phrases (beginning with ii+1) into the dictionary. */ #define SI /* nothing */ #define DI ++ii; DVAL_NEXT(dv,ii); UPDATE_D(dict,0,dv,ii,in); #define XI assert(ii < ip); ii = ip; DVAL_FIRST(dv,(ip)); #if (CLEVEL == 9) || (CLEVEL >= 7 && MBITS <= 4) || (CLEVEL >= 5 && MBITS <= 3) /* Insert the whole match (ii+1)..(ip-1) into dictionary. */ ++ii; do { DVAL_NEXT(dv,ii); UPDATE_D(dict,0,dv,ii,in); } while (++ii < ip); DVAL_NEXT(dv,ii); assert(ii == ip); DVAL_ASSERT(dv,ip); #elif (CLEVEL >= 3) SI DI DI XI #elif (CLEVEL >= 2) SI DI XI #else XI #endif } else { /* we've found a long match - see how far we can still go */ const lzo_bytep end; lzo_uint m_len; assert(ip <= in_end); assert(ii == ip - MIN_MATCH_LONG); if (pd(in_end,ip) <= (MAX_MATCH_LONG - MIN_MATCH_LONG)) end = in_end; else { end = ip + (MAX_MATCH_LONG - MIN_MATCH_LONG); assert(end < in_end); } while (ip < end && *m_pos == *ip) m_pos++, ip++; assert(ip <= in_end); /* 2a) compute match parameters */ m_len = pd(ip, ii); assert(m_len >= MIN_MATCH_LONG); assert(m_len <= MAX_MATCH_LONG); assert(m_off >= MIN_OFFSET); assert(m_off <= MAX_OFFSET); assert(ii-m_off == m_pos_sav); assert(lzo_memcmp(m_pos_sav,ii,m_len) == 0); assert(pd(ip,m_pos) == m_off); m_off -= MIN_OFFSET; /* 2b) code the long match */ /* code long match flag + low offset bits */ *op++ = LZO_BYTE(((MSIZE - 1) << OBITS) | (m_off & OMASK)); /* code high offset bits */ *op++ = LZO_BYTE(m_off >> OBITS); /* code match len */ *op++ = LZO_BYTE(m_len - MIN_MATCH_LONG); #if (LZO_COLLECT_STATS) lzo_stats->long_matches++; lzo_stats->long_match[m_len]++; #endif /* 2c) Insert phrases (beginning with ii+1) into the dictionary. */ #if (CLEVEL == 9) /* Insert the whole match (ii+1)..(ip-1) into dictionary. */ /* This is not recommended because it is slow. */ ++ii; do { DVAL_NEXT(dv,ii); UPDATE_D(dict,0,dv,ii,in); } while (++ii < ip); DVAL_NEXT(dv,ii); assert(ii == ip); DVAL_ASSERT(dv,ip); #elif (CLEVEL >= 8) SI DI DI DI DI DI DI DI DI XI #elif (CLEVEL >= 7) SI DI DI DI DI DI DI DI XI #elif (CLEVEL >= 6) SI DI DI DI DI DI DI XI #elif (CLEVEL >= 5) SI DI DI DI DI XI #elif (CLEVEL >= 4) SI DI DI DI XI #elif (CLEVEL >= 3) SI DI DI XI #elif (CLEVEL >= 2) SI DI XI #else XI #endif } /* ii now points to the start of the next literal run */ assert(ii == ip); } } while (ip < ip_end); assert(ip <= in_end); #if defined(LZO_RETURN_IF_NOT_COMPRESSIBLE) /* return -1 if op == out to indicate that we * couldn't compress and didn't copy anything. */ if (op == out) { *out_len = 0; return LZO_E_NOT_COMPRESSIBLE; } #endif /* store the final literal run */ if (pd(in_end+DVAL_LEN,ii) > 0) op = store_run(op,ii,pd(in_end+DVAL_LEN,ii)); *out_len = pd(op, out); return 0; /* compression went ok */ } /*********************************************************************** // LZO1A compress public entry point. ************************************************************************/ LZO_PUBLIC(int) lzo1a_compress ( const lzo_bytep in , lzo_uint in_len, lzo_bytep out, lzo_uintp out_len, lzo_voidp wrkmem ) { int r = LZO_E_OK; #if (LZO_COLLECT_STATS) lzo_memset(lzo_stats,0,sizeof(*lzo_stats)); lzo_stats->rbits = RBITS; lzo_stats->clevel = CLEVEL; lzo_stats->dbits = DBITS; lzo_stats->lbits = LBITS; lzo_stats->min_match_short = MIN_MATCH_SHORT; lzo_stats->max_match_short = MAX_MATCH_SHORT; lzo_stats->min_match_long = MIN_MATCH_LONG; lzo_stats->max_match_long = MAX_MATCH_LONG; lzo_stats->min_offset = MIN_OFFSET; lzo_stats->max_offset = MAX_OFFSET; lzo_stats->r0min = R0MIN; lzo_stats->r0fast = R0FAST; lzo_stats->r0max = R0MAX; lzo_stats->in_len = in_len; #endif /* don't try to compress a block that's too short */ if (in_len == 0) *out_len = 0; else if (in_len <= MIN_MATCH_LONG + DVAL_LEN + 1) { #if defined(LZO_RETURN_IF_NOT_COMPRESSIBLE) r = LZO_E_NOT_COMPRESSIBLE; #else *out_len = pd(store_run(out,in,in_len), out); #endif } else r = do_compress(in,in_len,out,out_len,wrkmem); #if (LZO_COLLECT_STATS) lzo_stats->short_matches -= lzo_stats->r1_matches; lzo_stats->short_match[MIN_MATCH] -= lzo_stats->r1_matches; lzo_stats->out_len = *out_len; #endif return r; } /* vi:ts=4:et */