summaryrefslogtreecommitdiff
path: root/go/golang/go/doc/codewalk/markov.xml
diff options
context:
space:
mode:
Diffstat (limited to 'go/golang/go/doc/codewalk/markov.xml')
-rw-r--r--go/golang/go/doc/codewalk/markov.xml307
1 files changed, 307 insertions, 0 deletions
diff --git a/go/golang/go/doc/codewalk/markov.xml b/go/golang/go/doc/codewalk/markov.xml
new file mode 100644
index 00000000..7e44840d
--- /dev/null
+++ b/go/golang/go/doc/codewalk/markov.xml
@@ -0,0 +1,307 @@
+<!--
+Copyright 2011 The Go Authors. All rights reserved.
+Use of this source code is governed by a BSD-style
+license that can be found in the LICENSE file.
+-->
+
+<codewalk title="Generating arbitrary text: a Markov chain algorithm">
+
+<step title="Introduction" src="doc/codewalk/markov.go:/Generating/,/line\./">
+ This codewalk describes a program that generates random text using
+ a Markov chain algorithm. The package comment describes the algorithm
+ and the operation of the program. Please read it before continuing.
+</step>
+
+<step title="Modeling Markov chains" src="doc/codewalk/markov.go:/ chain/">
+ A chain consists of a prefix and a suffix. Each prefix is a set
+ number of words, while a suffix is a single word.
+ A prefix can have an arbitrary number of suffixes.
+ To model this data, we use a <code>map[string][]string</code>.
+ Each map key is a prefix (a <code>string</code>) and its values are
+ lists of suffixes (a slice of strings, <code>[]string</code>).
+ <br/><br/>
+ Here is the example table from the package comment
+ as modeled by this data structure:
+ <pre>
+map[string][]string{
+ " ": {"I"},
+ " I": {"am"},
+ "I am": {"a", "not"},
+ "a free": {"man!"},
+ "am a": {"free"},
+ "am not": {"a"},
+ "a number!": {"I"},
+ "number! I": {"am"},
+ "not a": {"number!"},
+}</pre>
+ While each prefix consists of multiple words, we
+ store prefixes in the map as a single <code>string</code>.
+ It would seem more natural to store the prefix as a
+ <code>[]string</code>, but we can't do this with a map because the
+ key type of a map must implement equality (and slices do not).
+ <br/><br/>
+ Therefore, in most of our code we will model prefixes as a
+ <code>[]string</code> and join the strings together with a space
+ to generate the map key:
+ <pre>
+Prefix Map key
+
+[]string{"", ""} " "
+[]string{"", "I"} " I"
+[]string{"I", "am"} "I am"
+</pre>
+</step>
+
+<step title="The Chain struct" src="doc/codewalk/markov.go:/type Chain/,/}/">
+ The complete state of the chain table consists of the table itself and
+ the word length of the prefixes. The <code>Chain</code> struct stores
+ this data.
+</step>
+
+<step title="The NewChain constructor function" src="doc/codewalk/markov.go:/func New/,/\n}/">
+ The <code>Chain</code> struct has two unexported fields (those that
+ do not begin with an upper case character), and so we write a
+ <code>NewChain</code> constructor function that initializes the
+ <code>chain</code> map with <code>make</code> and sets the
+ <code>prefixLen</code> field.
+ <br/><br/>
+ This is constructor function is not strictly necessary as this entire
+ program is within a single package (<code>main</code>) and therefore
+ there is little practical difference between exported and unexported
+ fields. We could just as easily write out the contents of this function
+ when we want to construct a new Chain.
+ But using these unexported fields is good practice; it clearly denotes
+ that only methods of Chain and its constructor function should access
+ those fields. Also, structuring <code>Chain</code> like this means we
+ could easily move it into its own package at some later date.
+</step>
+
+<step title="The Prefix type" src="doc/codewalk/markov.go:/type Prefix/">
+ Since we'll be working with prefixes often, we define a
+ <code>Prefix</code> type with the concrete type <code>[]string</code>.
+ Defining a named type clearly allows us to be explicit when we are
+ working with a prefix instead of just a <code>[]string</code>.
+ Also, in Go we can define methods on any named type (not just structs),
+ so we can add methods that operate on <code>Prefix</code> if we need to.
+</step>
+
+<step title="The String method" src="doc/codewalk/markov.go:/func[^\n]+String/,/}/">
+ The first method we define on <code>Prefix</code> is
+ <code>String</code>. It returns a <code>string</code> representation
+ of a <code>Prefix</code> by joining the slice elements together with
+ spaces. We will use this method to generate keys when working with
+ the chain map.
+</step>
+
+<step title="Building the chain" src="doc/codewalk/markov.go:/func[^\n]+Build/,/\n}/">
+ The <code>Build</code> method reads text from an <code>io.Reader</code>
+ and parses it into prefixes and suffixes that are stored in the
+ <code>Chain</code>.
+ <br/><br/>
+ The <code><a href="/pkg/io/#Reader">io.Reader</a></code> is an
+ interface type that is widely used by the standard library and
+ other Go code. Our code uses the
+ <code><a href="/pkg/fmt/#Fscan">fmt.Fscan</a></code> function, which
+ reads space-separated values from an <code>io.Reader</code>.
+ <br/><br/>
+ The <code>Build</code> method returns once the <code>Reader</code>'s
+ <code>Read</code> method returns <code>io.EOF</code> (end of file)
+ or some other read error occurs.
+</step>
+
+<step title="Buffering the input" src="doc/codewalk/markov.go:/bufio\.NewReader/">
+ This function does many small reads, which can be inefficient for some
+ <code>Readers</code>. For efficiency we wrap the provided
+ <code>io.Reader</code> with
+ <code><a href="/pkg/bufio/">bufio.NewReader</a></code> to create a
+ new <code>io.Reader</code> that provides buffering.
+</step>
+
+<step title="The Prefix variable" src="doc/codewalk/markov.go:/make\(Prefix/">
+ At the top of the function we make a <code>Prefix</code> slice
+ <code>p</code> using the <code>Chain</code>'s <code>prefixLen</code>
+ field as its length.
+ We'll use this variable to hold the current prefix and mutate it with
+ each new word we encounter.
+</step>
+
+<step title="Scanning words" src="doc/codewalk/markov.go:/var s string/,/\n }/">
+ In our loop we read words from the <code>Reader</code> into a
+ <code>string</code> variable <code>s</code> using
+ <code>fmt.Fscan</code>. Since <code>Fscan</code> uses space to
+ separate each input value, each call will yield just one word
+ (including punctuation), which is exactly what we need.
+ <br/><br/>
+ <code>Fscan</code> returns an error if it encounters a read error
+ (<code>io.EOF</code>, for example) or if it can't scan the requested
+ value (in our case, a single string). In either case we just want to
+ stop scanning, so we <code>break</code> out of the loop.
+</step>
+
+<step title="Adding a prefix and suffix to the chain" src="doc/codewalk/markov.go:/ key/,/key\], s\)">
+ The word stored in <code>s</code> is a new suffix. We add the new
+ prefix/suffix combination to the <code>chain</code> map by computing
+ the map key with <code>p.String</code> and appending the suffix
+ to the slice stored under that key.
+ <br/><br/>
+ The built-in <code>append</code> function appends elements to a slice
+ and allocates new storage when necessary. When the provided slice is
+ <code>nil</code>, <code>append</code> allocates a new slice.
+ This behavior conveniently ties in with the semantics of our map:
+ retrieving an unset key returns the zero value of the value type and
+ the zero value of <code>[]string</code> is <code>nil</code>.
+ When our program encounters a new prefix (yielding a <code>nil</code>
+ value in the map) <code>append</code> will allocate a new slice.
+ <br/><br/>
+ For more information about the <code>append</code> function and slices
+ in general see the
+ <a href="/doc/articles/slices_usage_and_internals.html">Slices: usage and internals</a> article.
+</step>
+
+<step title="Pushing the suffix onto the prefix" src="doc/codewalk/markov.go:/p\.Shift/">
+ Before reading the next word our algorithm requires us to drop the
+ first word from the prefix and push the current suffix onto the prefix.
+ <br/><br/>
+ When in this state
+ <pre>
+p == Prefix{"I", "am"}
+s == "not" </pre>
+ the new value for <code>p</code> would be
+ <pre>
+p == Prefix{"am", "not"}</pre>
+ This operation is also required during text generation so we put
+ the code to perform this mutation of the slice inside a method on
+ <code>Prefix</code> named <code>Shift</code>.
+</step>
+
+<step title="The Shift method" src="doc/codewalk/markov.go:/func[^\n]+Shift/,/\n}/">
+ The <code>Shift</code> method uses the built-in <code>copy</code>
+ function to copy the last len(p)-1 elements of <code>p</code> to
+ the start of the slice, effectively moving the elements
+ one index to the left (if you consider zero as the leftmost index).
+ <pre>
+p := Prefix{"I", "am"}
+copy(p, p[1:])
+// p == Prefix{"am", "am"}</pre>
+ We then assign the provided <code>word</code> to the last index
+ of the slice:
+ <pre>
+// suffix == "not"
+p[len(p)-1] = suffix
+// p == Prefix{"am", "not"}</pre>
+</step>
+
+<step title="Generating text" src="doc/codewalk/markov.go:/func[^\n]+Generate/,/\n}/">
+ The <code>Generate</code> method is similar to <code>Build</code>
+ except that instead of reading words from a <code>Reader</code>
+ and storing them in a map, it reads words from the map and
+ appends them to a slice (<code>words</code>).
+ <br/><br/>
+ <code>Generate</code> uses a conditional for loop to generate
+ up to <code>n</code> words.
+</step>
+
+<step title="Getting potential suffixes" src="doc/codewalk/markov.go:/choices/,/}\n/">
+ At each iteration of the loop we retrieve a list of potential suffixes
+ for the current prefix. We access the <code>chain</code> map at key
+ <code>p.String()</code> and assign its contents to <code>choices</code>.
+ <br/><br/>
+ If <code>len(choices)</code> is zero we break out of the loop as there
+ are no potential suffixes for that prefix.
+ This test also works if the key isn't present in the map at all:
+ in that case, <code>choices</code> will be <code>nil</code> and the
+ length of a <code>nil</code> slice is zero.
+</step>
+
+<step title="Choosing a suffix at random" src="doc/codewalk/markov.go:/next := choices/,/Shift/">
+ To choose a suffix we use the
+ <code><a href="/pkg/math/rand/#Intn">rand.Intn</a></code> function.
+ It returns a random integer up to (but not including) the provided
+ value. Passing in <code>len(choices)</code> gives us a random index
+ into the full length of the list.
+ <br/><br/>
+ We use that index to pick our new suffix, assign it to
+ <code>next</code> and append it to the <code>words</code> slice.
+ <br/><br/>
+ Next, we <code>Shift</code> the new suffix onto the prefix just as
+ we did in the <code>Build</code> method.
+</step>
+
+<step title="Returning the generated text" src="doc/codewalk/markov.go:/Join\(words/">
+ Before returning the generated text as a string, we use the
+ <code>strings.Join</code> function to join the elements of
+ the <code>words</code> slice together, separated by spaces.
+</step>
+
+<step title="Command-line flags" src="doc/codewalk/markov.go:/Register command-line flags/,/prefixLen/">
+ To make it easy to tweak the prefix and generated text lengths we
+ use the <code><a href="/pkg/flag/">flag</a></code> package to parse
+ command-line flags.
+ <br/><br/>
+ These calls to <code>flag.Int</code> register new flags with the
+ <code>flag</code> package. The arguments to <code>Int</code> are the
+ flag name, its default value, and a description. The <code>Int</code>
+ function returns a pointer to an integer that will contain the
+ user-supplied value (or the default value if the flag was omitted on
+ the command-line).
+</step>
+
+<step title="Program set up" src="doc/codewalk/markov.go:/flag.Parse/,/rand.Seed/">
+ The <code>main</code> function begins by parsing the command-line
+ flags with <code>flag.Parse</code> and seeding the <code>rand</code>
+ package's random number generator with the current time.
+ <br/><br/>
+ If the command-line flags provided by the user are invalid the
+ <code>flag.Parse</code> function will print an informative usage
+ message and terminate the program.
+</step>
+
+<step title="Creating and building a new Chain" src="doc/codewalk/markov.go:/c := NewChain/,/c\.Build/">
+ To create the new <code>Chain</code> we call <code>NewChain</code>
+ with the value of the <code>prefix</code> flag.
+ <br/><br/>
+ To build the chain we call <code>Build</code> with
+ <code>os.Stdin</code> (which implements <code>io.Reader</code>) so
+ that it will read its input from standard input.
+</step>
+
+<step title="Generating and printing text" src="doc/codewalk/markov.go:/c\.Generate/,/fmt.Println/">
+ Finally, to generate text we call <code>Generate</code> with
+ the value of the <code>words</code> flag and assigning the result
+ to the variable <code>text</code>.
+ <br/><br/>
+ Then we call <code>fmt.Println</code> to write the text to standard
+ output, followed by a carriage return.
+</step>
+
+<step title="Using this program" src="doc/codewalk/markov.go">
+ To use this program, first build it with the
+ <a href="/cmd/go/">go</a> command:
+ <pre>
+$ go build markov.go</pre>
+ And then execute it while piping in some input text:
+ <pre>
+$ echo "a man a plan a canal panama" \
+ | ./markov -prefix=1
+a plan a man a plan a canal panama</pre>
+ Here's a transcript of generating some text using the Go distribution's
+ README file as source material:
+ <pre>
+$ ./markov -words=10 &lt; $GOROOT/README
+This is the source code repository for the Go source
+$ ./markov -prefix=1 -words=10 &lt; $GOROOT/README
+This is the go directory (the one containing this README).
+$ ./markov -prefix=1 -words=10 &lt; $GOROOT/README
+This is the variable if you have just untarred a</pre>
+</step>
+
+<step title="An exercise for the reader" src="doc/codewalk/markov.go">
+ The <code>Generate</code> function does a lot of allocations when it
+ builds the <code>words</code> slice. As an exercise, modify it to
+ take an <code>io.Writer</code> to which it incrementally writes the
+ generated text with <code>Fprint</code>.
+ Aside from being more efficient this makes <code>Generate</code>
+ more symmetrical to <code>Build</code>.
+</step>
+
+</codewalk>