summaryrefslogtreecommitdiff
path: root/go/golang/go/doc/asm.html
diff options
context:
space:
mode:
Diffstat (limited to 'go/golang/go/doc/asm.html')
-rw-r--r--go/golang/go/doc/asm.html979
1 files changed, 0 insertions, 979 deletions
diff --git a/go/golang/go/doc/asm.html b/go/golang/go/doc/asm.html
deleted file mode 100644
index f2f8fad5..00000000
--- a/go/golang/go/doc/asm.html
+++ /dev/null
@@ -1,979 +0,0 @@
-<!--{
- "Title": "A Quick Guide to Go's Assembler",
- "Path": "/doc/asm"
-}-->
-
-<h2 id="introduction">A Quick Guide to Go's Assembler</h2>
-
-<p>
-This document is a quick outline of the unusual form of assembly language used by the <code>gc</code> Go compiler.
-The document is not comprehensive.
-</p>
-
-<p>
-The assembler is based on the input style of the Plan 9 assemblers, which is documented in detail
-<a href="https://9p.io/sys/doc/asm.html">elsewhere</a>.
-If you plan to write assembly language, you should read that document although much of it is Plan 9-specific.
-The current document provides a summary of the syntax and the differences with
-what is explained in that document, and
-describes the peculiarities that apply when writing assembly code to interact with Go.
-</p>
-
-<p>
-The most important thing to know about Go's assembler is that it is not a direct representation of the underlying machine.
-Some of the details map precisely to the machine, but some do not.
-This is because the compiler suite (see
-<a href="https://9p.io/sys/doc/compiler.html">this description</a>)
-needs no assembler pass in the usual pipeline.
-Instead, the compiler operates on a kind of semi-abstract instruction set,
-and instruction selection occurs partly after code generation.
-The assembler works on the semi-abstract form, so
-when you see an instruction like <code>MOV</code>
-what the toolchain actually generates for that operation might
-not be a move instruction at all, perhaps a clear or load.
-Or it might correspond exactly to the machine instruction with that name.
-In general, machine-specific operations tend to appear as themselves, while more general concepts like
-memory move and subroutine call and return are more abstract.
-The details vary with architecture, and we apologize for the imprecision; the situation is not well-defined.
-</p>
-
-<p>
-The assembler program is a way to parse a description of that
-semi-abstract instruction set and turn it into instructions to be
-input to the linker.
-If you want to see what the instructions look like in assembly for a given architecture, say amd64, there
-are many examples in the sources of the standard library, in packages such as
-<a href="/pkg/runtime/"><code>runtime</code></a> and
-<a href="/pkg/math/big/"><code>math/big</code></a>.
-You can also examine what the compiler emits as assembly code
-(the actual output may differ from what you see here):
-</p>
-
-<pre>
-$ cat x.go
-package main
-
-func main() {
- println(3)
-}
-$ GOOS=linux GOARCH=amd64 go tool compile -S x.go # or: go build -gcflags -S x.go
-
---- prog list "main" ---
-0000 (x.go:3) TEXT main+0(SB),$8-0
-0001 (x.go:3) FUNCDATA $0,gcargs·0+0(SB)
-0002 (x.go:3) FUNCDATA $1,gclocals·0+0(SB)
-0003 (x.go:4) MOVQ $3,(SP)
-0004 (x.go:4) PCDATA $0,$8
-0005 (x.go:4) CALL ,runtime.printint+0(SB)
-0006 (x.go:4) PCDATA $0,$-1
-0007 (x.go:4) PCDATA $0,$0
-0008 (x.go:4) CALL ,runtime.printnl+0(SB)
-0009 (x.go:4) PCDATA $0,$-1
-0010 (x.go:5) RET ,
-...
-</pre>
-
-<p>
-The <code>FUNCDATA</code> and <code>PCDATA</code> directives contain information
-for use by the garbage collector; they are introduced by the compiler.
-</p>
-
-<!-- Commenting out because the feature is gone but it's popular and may come back.
-
-<p>
-To see what gets put in the binary after linking, add the <code>-a</code> flag to the linker:
-</p>
-
-<pre>
-$ go tool 6l -a x.6 # or: go build -ldflags -a x.go
-codeblk [0x2000,0x1d059) at offset 0x1000
-002000 main.main | (3) TEXT main.main+0(SB),$8
-002000 65488b0c25a0080000 | (3) MOVQ 2208(GS),CX
-002009 483b21 | (3) CMPQ SP,(CX)
-00200c 7707 | (3) JHI ,2015
-00200e e83da20100 | (3) CALL ,1c250+runtime.morestack00
-002013 ebeb | (3) JMP ,2000
-002015 4883ec08 | (3) SUBQ $8,SP
-002019 | (3) FUNCDATA $0,main.gcargs·0+0(SB)
-002019 | (3) FUNCDATA $1,main.gclocals·0+0(SB)
-002019 48c7042403000000 | (4) MOVQ $3,(SP)
-002021 | (4) PCDATA $0,$8
-002021 e8aad20000 | (4) CALL ,f2d0+runtime.printint
-002026 | (4) PCDATA $0,$-1
-002026 | (4) PCDATA $0,$0
-002026 e865d40000 | (4) CALL ,f490+runtime.printnl
-00202b | (4) PCDATA $0,$-1
-00202b 4883c408 | (5) ADDQ $8,SP
-00202f c3 | (5) RET ,
-...
-</pre>
-
--->
-
-<h3 id="constants">Constants</h3>
-
-<p>
-Although the assembler takes its guidance from the Plan 9 assemblers,
-it is a distinct program, so there are some differences.
-One is in constant evaluation.
-Constant expressions in the assembler are parsed using Go's operator
-precedence, not the C-like precedence of the original.
-Thus <code>3&amp;1<<2</code> is 4, not 0—it parses as <code>(3&amp;1)<<2</code>
-not <code>3&amp;(1<<2)</code>.
-Also, constants are always evaluated as 64-bit unsigned integers.
-Thus <code>-2</code> is not the integer value minus two,
-but the unsigned 64-bit integer with the same bit pattern.
-The distinction rarely matters but
-to avoid ambiguity, division or right shift where the right operand's
-high bit is set is rejected.
-</p>
-
-<h3 id="symbols">Symbols</h3>
-
-<p>
-Some symbols, such as <code>R1</code> or <code>LR</code>,
-are predefined and refer to registers.
-The exact set depends on the architecture.
-</p>
-
-<p>
-There are four predeclared symbols that refer to pseudo-registers.
-These are not real registers, but rather virtual registers maintained by
-the toolchain, such as a frame pointer.
-The set of pseudo-registers is the same for all architectures:
-</p>
-
-<ul>
-
-<li>
-<code>FP</code>: Frame pointer: arguments and locals.
-</li>
-
-<li>
-<code>PC</code>: Program counter:
-jumps and branches.
-</li>
-
-<li>
-<code>SB</code>: Static base pointer: global symbols.
-</li>
-
-<li>
-<code>SP</code>: Stack pointer: top of stack.
-</li>
-
-</ul>
-
-<p>
-All user-defined symbols are written as offsets to the pseudo-registers
-<code>FP</code> (arguments and locals) and <code>SB</code> (globals).
-</p>
-
-<p>
-The <code>SB</code> pseudo-register can be thought of as the origin of memory, so the symbol <code>foo(SB)</code>
-is the name <code>foo</code> as an address in memory.
-This form is used to name global functions and data.
-Adding <code>&lt;&gt;</code> to the name, as in <span style="white-space: nowrap"><code>foo&lt;&gt;(SB)</code></span>, makes the name
-visible only in the current source file, like a top-level <code>static</code> declaration in a C file.
-Adding an offset to the name refers to that offset from the symbol's address, so
-<code>foo+4(SB)</code> is four bytes past the start of <code>foo</code>.
-</p>
-
-<p>
-The <code>FP</code> pseudo-register is a virtual frame pointer
-used to refer to function arguments.
-The compilers maintain a virtual frame pointer and refer to the arguments on the stack as offsets from that pseudo-register.
-Thus <code>0(FP)</code> is the first argument to the function,
-<code>8(FP)</code> is the second (on a 64-bit machine), and so on.
-However, when referring to a function argument this way, it is necessary to place a name
-at the beginning, as in <code>first_arg+0(FP)</code> and <code>second_arg+8(FP)</code>.
-(The meaning of the offset—offset from the frame pointer—distinct
-from its use with <code>SB</code>, where it is an offset from the symbol.)
-The assembler enforces this convention, rejecting plain <code>0(FP)</code> and <code>8(FP)</code>.
-The actual name is semantically irrelevant but should be used to document
-the argument's name.
-It is worth stressing that <code>FP</code> is always a
-pseudo-register, not a hardware
-register, even on architectures with a hardware frame pointer.
-</p>
-
-<p>
-For assembly functions with Go prototypes, <code>go</code> <code>vet</code> will check that the argument names
-and offsets match.
-On 32-bit systems, the low and high 32 bits of a 64-bit value are distinguished by adding
-a <code>_lo</code> or <code>_hi</code> suffix to the name, as in <code>arg_lo+0(FP)</code> or <code>arg_hi+4(FP)</code>.
-If a Go prototype does not name its result, the expected assembly name is <code>ret</code>.
-</p>
-
-<p>
-The <code>SP</code> pseudo-register is a virtual stack pointer
-used to refer to frame-local variables and the arguments being
-prepared for function calls.
-It points to the top of the local stack frame, so references should use negative offsets
-in the range [−framesize, 0):
-<code>x-8(SP)</code>, <code>y-4(SP)</code>, and so on.
-</p>
-
-<p>
-On architectures with a hardware register named <code>SP</code>,
-the name prefix distinguishes
-references to the virtual stack pointer from references to the architectural
-<code>SP</code> register.
-That is, <code>x-8(SP)</code> and <code>-8(SP)</code>
-are different memory locations:
-the first refers to the virtual stack pointer pseudo-register,
-while the second refers to the
-hardware's <code>SP</code> register.
-</p>
-
-<p>
-On machines where <code>SP</code> and <code>PC</code> are
-traditionally aliases for a physical, numbered register,
-in the Go assembler the names <code>SP</code> and <code>PC</code>
-are still treated specially;
-for instance, references to <code>SP</code> require a symbol,
-much like <code>FP</code>.
-To access the actual hardware register use the true <code>R</code> name.
-For example, on the ARM architecture the hardware
-<code>SP</code> and <code>PC</code> are accessible as
-<code>R13</code> and <code>R15</code>.
-</p>
-
-<p>
-Branches and direct jumps are always written as offsets to the PC, or as
-jumps to labels:
-</p>
-
-<pre>
-label:
- MOVW $0, R1
- JMP label
-</pre>
-
-<p>
-Each label is visible only within the function in which it is defined.
-It is therefore permitted for multiple functions in a file to define
-and use the same label names.
-Direct jumps and call instructions can target text symbols,
-such as <code>name(SB)</code>, but not offsets from symbols,
-such as <code>name+4(SB)</code>.
-</p>
-
-<p>
-Instructions, registers, and assembler directives are always in UPPER CASE to remind you
-that assembly programming is a fraught endeavor.
-(Exception: the <code>g</code> register renaming on ARM.)
-</p>
-
-<p>
-In Go object files and binaries, the full name of a symbol is the
-package path followed by a period and the symbol name:
-<code>fmt.Printf</code> or <code>math/rand.Int</code>.
-Because the assembler's parser treats period and slash as punctuation,
-those strings cannot be used directly as identifier names.
-Instead, the assembler allows the middle dot character U+00B7
-and the division slash U+2215 in identifiers and rewrites them to
-plain period and slash.
-Within an assembler source file, the symbols above are written as
-<code>fmt·Printf</code> and <code>math∕rand·Int</code>.
-The assembly listings generated by the compilers when using the <code>-S</code> flag
-show the period and slash directly instead of the Unicode replacements
-required by the assemblers.
-</p>
-
-<p>
-Most hand-written assembly files do not include the full package path
-in symbol names, because the linker inserts the package path of the current
-object file at the beginning of any name starting with a period:
-in an assembly source file within the math/rand package implementation,
-the package's Int function can be referred to as <code>·Int</code>.
-This convention avoids the need to hard-code a package's import path in its
-own source code, making it easier to move the code from one location to another.
-</p>
-
-<h3 id="directives">Directives</h3>
-
-<p>
-The assembler uses various directives to bind text and data to symbol names.
-For example, here is a simple complete function definition. The <code>TEXT</code>
-directive declares the symbol <code>runtime·profileloop</code> and the instructions
-that follow form the body of the function.
-The last instruction in a <code>TEXT</code> block must be some sort of jump, usually a <code>RET</code> (pseudo-)instruction.
-(If it's not, the linker will append a jump-to-itself instruction; there is no fallthrough in <code>TEXTs</code>.)
-After the symbol, the arguments are flags (see below)
-and the frame size, a constant (but see below):
-</p>
-
-<pre>
-TEXT runtime·profileloop(SB),NOSPLIT,$8
- MOVQ $runtime·profileloop1(SB), CX
- MOVQ CX, 0(SP)
- CALL runtime·externalthreadhandler(SB)
- RET
-</pre>
-
-<p>
-In the general case, the frame size is followed by an argument size, separated by a minus sign.
-(It's not a subtraction, just idiosyncratic syntax.)
-The frame size <code>$24-8</code> states that the function has a 24-byte frame
-and is called with 8 bytes of argument, which live on the caller's frame.
-If <code>NOSPLIT</code> is not specified for the <code>TEXT</code>,
-the argument size must be provided.
-For assembly functions with Go prototypes, <code>go</code> <code>vet</code> will check that the
-argument size is correct.
-</p>
-
-<p>
-Note that the symbol name uses a middle dot to separate the components and is specified as an offset from the
-static base pseudo-register <code>SB</code>.
-This function would be called from Go source for package <code>runtime</code> using the
-simple name <code>profileloop</code>.
-</p>
-
-<p>
-Global data symbols are defined by a sequence of initializing
-<code>DATA</code> directives followed by a <code>GLOBL</code> directive.
-Each <code>DATA</code> directive initializes a section of the
-corresponding memory.
-The memory not explicitly initialized is zeroed.
-The general form of the <code>DATA</code> directive is
-
-<pre>
-DATA symbol+offset(SB)/width, value
-</pre>
-
-<p>
-which initializes the symbol memory at the given offset and width with the given value.
-The <code>DATA</code> directives for a given symbol must be written with increasing offsets.
-</p>
-
-<p>
-The <code>GLOBL</code> directive declares a symbol to be global.
-The arguments are optional flags and the size of the data being declared as a global,
-which will have initial value all zeros unless a <code>DATA</code> directive
-has initialized it.
-The <code>GLOBL</code> directive must follow any corresponding <code>DATA</code> directives.
-</p>
-
-<p>
-For example,
-</p>
-
-<pre>
-DATA divtab&lt;&gt;+0x00(SB)/4, $0xf4f8fcff
-DATA divtab&lt;&gt;+0x04(SB)/4, $0xe6eaedf0
-...
-DATA divtab&lt;&gt;+0x3c(SB)/4, $0x81828384
-GLOBL divtab&lt;&gt;(SB), RODATA, $64
-
-GLOBL runtime·tlsoffset(SB), NOPTR, $4
-</pre>
-
-<p>
-declares and initializes <code>divtab&lt;&gt;</code>, a read-only 64-byte table of 4-byte integer values,
-and declares <code>runtime·tlsoffset</code>, a 4-byte, implicitly zeroed variable that
-contains no pointers.
-</p>
-
-<p>
-There may be one or two arguments to the directives.
-If there are two, the first is a bit mask of flags,
-which can be written as numeric expressions, added or or-ed together,
-or can be set symbolically for easier absorption by a human.
-Their values, defined in the standard <code>#include</code> file <code>textflag.h</code>, are:
-</p>
-
-<ul>
-<li>
-<code>NOPROF</code> = 1
-<br>
-(For <code>TEXT</code> items.)
-Don't profile the marked function. This flag is deprecated.
-</li>
-<li>
-<code>DUPOK</code> = 2
-<br>
-It is legal to have multiple instances of this symbol in a single binary.
-The linker will choose one of the duplicates to use.
-</li>
-<li>
-<code>NOSPLIT</code> = 4
-<br>
-(For <code>TEXT</code> items.)
-Don't insert the preamble to check if the stack must be split.
-The frame for the routine, plus anything it calls, must fit in the
-spare space at the top of the stack segment.
-Used to protect routines such as the stack splitting code itself.
-</li>
-<li>
-<code>RODATA</code> = 8
-<br>
-(For <code>DATA</code> and <code>GLOBL</code> items.)
-Put this data in a read-only section.
-</li>
-<li>
-<code>NOPTR</code> = 16
-<br>
-(For <code>DATA</code> and <code>GLOBL</code> items.)
-This data contains no pointers and therefore does not need to be
-scanned by the garbage collector.
-</li>
-<li>
-<code>WRAPPER</code> = 32
-<br>
-(For <code>TEXT</code> items.)
-This is a wrapper function and should not count as disabling <code>recover</code>.
-</li>
-<li>
-<code>NEEDCTXT</code> = 64
-<br>
-(For <code>TEXT</code> items.)
-This function is a closure so it uses its incoming context register.
-</li>
-</ul>
-
-<h3 id="runtime">Runtime Coordination</h3>
-
-<p>
-For garbage collection to run correctly, the runtime must know the
-location of pointers in all global data and in most stack frames.
-The Go compiler emits this information when compiling Go source files,
-but assembly programs must define it explicitly.
-</p>
-
-<p>
-A data symbol marked with the <code>NOPTR</code> flag (see above)
-is treated as containing no pointers to runtime-allocated data.
-A data symbol with the <code>RODATA</code> flag
-is allocated in read-only memory and is therefore treated
-as implicitly marked <code>NOPTR</code>.
-A data symbol with a total size smaller than a pointer
-is also treated as implicitly marked <code>NOPTR</code>.
-It is not possible to define a symbol containing pointers in an assembly source file;
-such a symbol must be defined in a Go source file instead.
-Assembly source can still refer to the symbol by name
-even without <code>DATA</code> and <code>GLOBL</code> directives.
-A good general rule of thumb is to define all non-<code>RODATA</code>
-symbols in Go instead of in assembly.
-</p>
-
-<p>
-Each function also needs annotations giving the location of
-live pointers in its arguments, results, and local stack frame.
-For an assembly function with no pointer results and
-either no local stack frame or no function calls,
-the only requirement is to define a Go prototype for the function
-in a Go source file in the same package. The name of the assembly
-function must not contain the package name component (for example,
-function <code>Syscall</code> in package <code>syscall</code> should
-use the name <code>·Syscall</code> instead of the equivalent name
-<code>syscall·Syscall</code> in its <code>TEXT</code> directive).
-For more complex situations, explicit annotation is needed.
-These annotations use pseudo-instructions defined in the standard
-<code>#include</code> file <code>funcdata.h</code>.
-</p>
-
-<p>
-If a function has no arguments and no results,
-the pointer information can be omitted.
-This is indicated by an argument size annotation of <code>$<i>n</i>-0</code>
-on the <code>TEXT</code> instruction.
-Otherwise, pointer information must be provided by
-a Go prototype for the function in a Go source file,
-even for assembly functions not called directly from Go.
-(The prototype will also let <code>go</code> <code>vet</code> check the argument references.)
-At the start of the function, the arguments are assumed
-to be initialized but the results are assumed uninitialized.
-If the results will hold live pointers during a call instruction,
-the function should start by zeroing the results and then
-executing the pseudo-instruction <code>GO_RESULTS_INITIALIZED</code>.
-This instruction records that the results are now initialized
-and should be scanned during stack movement and garbage collection.
-It is typically easier to arrange that assembly functions do not
-return pointers or do not contain call instructions;
-no assembly functions in the standard library use
-<code>GO_RESULTS_INITIALIZED</code>.
-</p>
-
-<p>
-If a function has no local stack frame,
-the pointer information can be omitted.
-This is indicated by a local frame size annotation of <code>$0-<i>n</i></code>
-on the <code>TEXT</code> instruction.
-The pointer information can also be omitted if the
-function contains no call instructions.
-Otherwise, the local stack frame must not contain pointers,
-and the assembly must confirm this fact by executing the
-pseudo-instruction <code>NO_LOCAL_POINTERS</code>.
-Because stack resizing is implemented by moving the stack,
-the stack pointer may change during any function call:
-even pointers to stack data must not be kept in local variables.
-</p>
-
-<p>
-Assembly functions should always be given Go prototypes,
-both to provide pointer information for the arguments and results
-and to let <code>go</code> <code>vet</code> check that
-the offsets being used to access them are correct.
-</p>
-
-<h2 id="architectures">Architecture-specific details</h2>
-
-<p>
-It is impractical to list all the instructions and other details for each machine.
-To see what instructions are defined for a given machine, say ARM,
-look in the source for the <code>obj</code> support library for
-that architecture, located in the directory <code>src/cmd/internal/obj/arm</code>.
-In that directory is a file <code>a.out.go</code>; it contains
-a long list of constants starting with <code>A</code>, like this:
-</p>
-
-<pre>
-const (
- AAND = obj.ABaseARM + obj.A_ARCHSPECIFIC + iota
- AEOR
- ASUB
- ARSB
- AADD
- ...
-</pre>
-
-<p>
-This is the list of instructions and their spellings as known to the assembler and linker for that architecture.
-Each instruction begins with an initial capital <code>A</code> in this list, so <code>AAND</code>
-represents the bitwise and instruction,
-<code>AND</code> (without the leading <code>A</code>),
-and is written in assembly source as <code>AND</code>.
-The enumeration is mostly in alphabetical order.
-(The architecture-independent <code>AXXX</code>, defined in the
-<code>cmd/internal/obj</code> package,
-represents an invalid instruction).
-The sequence of the <code>A</code> names has nothing to do with the actual
-encoding of the machine instructions.
-The <code>cmd/internal/obj</code> package takes care of that detail.
-</p>
-
-<p>
-The instructions for both the 386 and AMD64 architectures are listed in
-<code>cmd/internal/obj/x86/a.out.go</code>.
-</p>
-
-<p>
-The architectures share syntax for common addressing modes such as
-<code>(R1)</code> (register indirect),
-<code>4(R1)</code> (register indirect with offset), and
-<code>$foo(SB)</code> (absolute address).
-The assembler also supports some (not necessarily all) addressing modes
-specific to each architecture.
-The sections below list these.
-</p>
-
-<p>
-One detail evident in the examples from the previous sections is that data in the instructions flows from left to right:
-<code>MOVQ</code> <code>$0,</code> <code>CX</code> clears <code>CX</code>.
-This rule applies even on architectures where the conventional notation uses the opposite direction.
-</p>
-
-<p>
-Here follow some descriptions of key Go-specific details for the supported architectures.
-</p>
-
-<h3 id="x86">32-bit Intel 386</h3>
-
-<p>
-The runtime pointer to the <code>g</code> structure is maintained
-through the value of an otherwise unused (as far as Go is concerned) register in the MMU.
-A OS-dependent macro <code>get_tls</code> is defined for the assembler if the source includes
-a special header, <code>go_asm.h</code>:
-</p>
-
-<pre>
-#include "go_asm.h"
-</pre>
-
-<p>
-Within the runtime, the <code>get_tls</code> macro loads its argument register
-with a pointer to the <code>g</code> pointer, and the <code>g</code> struct
-contains the <code>m</code> pointer.
-The sequence to load <code>g</code> and <code>m</code> using <code>CX</code> looks like this:
-</p>
-
-<pre>
-get_tls(CX)
-MOVL g(CX), AX // Move g into AX.
-MOVL g_m(AX), BX // Move g.m into BX.
-</pre>
-
-<p>
-Addressing modes:
-</p>
-
-<ul>
-
-<li>
-<code>(DI)(BX*2)</code>: The location at address <code>DI</code> plus <code>BX*2</code>.
-</li>
-
-<li>
-<code>64(DI)(BX*2)</code>: The location at address <code>DI</code> plus <code>BX*2</code> plus 64.
-These modes accept only 1, 2, 4, and 8 as scale factors.
-</li>
-
-</ul>
-
-<p>
-When using the compiler and assembler's
-<code>-dynlink</code> or <code>-shared</code> modes,
-any load or store of a fixed memory location such as a global variable
-must be assumed to overwrite <code>CX</code>.
-Therefore, to be safe for use with these modes,
-assembly sources should typically avoid CX except between memory references.
-</p>
-
-<h3 id="amd64">64-bit Intel 386 (a.k.a. amd64)</h3>
-
-<p>
-The two architectures behave largely the same at the assembler level.
-Assembly code to access the <code>m</code> and <code>g</code>
-pointers on the 64-bit version is the same as on the 32-bit 386,
-except it uses <code>MOVQ</code> rather than <code>MOVL</code>:
-</p>
-
-<pre>
-get_tls(CX)
-MOVQ g(CX), AX // Move g into AX.
-MOVQ g_m(AX), BX // Move g.m into BX.
-</pre>
-
-<h3 id="arm">ARM</h3>
-
-<p>
-The registers <code>R10</code> and <code>R11</code>
-are reserved by the compiler and linker.
-</p>
-
-<p>
-<code>R10</code> points to the <code>g</code> (goroutine) structure.
-Within assembler source code, this pointer must be referred to as <code>g</code>;
-the name <code>R10</code> is not recognized.
-</p>
-
-<p>
-To make it easier for people and compilers to write assembly, the ARM linker
-allows general addressing forms and pseudo-operations like <code>DIV</code> or <code>MOD</code>
-that may not be expressible using a single hardware instruction.
-It implements these forms as multiple instructions, often using the <code>R11</code> register
-to hold temporary values.
-Hand-written assembly can use <code>R11</code>, but doing so requires
-being sure that the linker is not also using it to implement any of the other
-instructions in the function.
-</p>
-
-<p>
-When defining a <code>TEXT</code>, specifying frame size <code>$-4</code>
-tells the linker that this is a leaf function that does not need to save <code>LR</code> on entry.
-</p>
-
-<p>
-The name <code>SP</code> always refers to the virtual stack pointer described earlier.
-For the hardware register, use <code>R13</code>.
-</p>
-
-<p>
-Condition code syntax is to append a period and the one- or two-letter code to the instruction,
-as in <code>MOVW.EQ</code>.
-Multiple codes may be appended: <code>MOVM.IA.W</code>.
-The order of the code modifiers is irrelevant.
-</p>
-
-<p>
-Addressing modes:
-</p>
-
-<ul>
-
-<li>
-<code>R0-&gt;16</code>
-<br>
-<code>R0&gt;&gt;16</code>
-<br>
-<code>R0&lt;&lt;16</code>
-<br>
-<code>R0@&gt;16</code>:
-For <code>&lt;&lt;</code>, left shift <code>R0</code> by 16 bits.
-The other codes are <code>-&gt;</code> (arithmetic right shift),
-<code>&gt;&gt;</code> (logical right shift), and
-<code>@&gt;</code> (rotate right).
-</li>
-
-<li>
-<code>R0-&gt;R1</code>
-<br>
-<code>R0&gt;&gt;R1</code>
-<br>
-<code>R0&lt;&lt;R1</code>
-<br>
-<code>R0@&gt;R1</code>:
-For <code>&lt;&lt;</code>, left shift <code>R0</code> by the count in <code>R1</code>.
-The other codes are <code>-&gt;</code> (arithmetic right shift),
-<code>&gt;&gt;</code> (logical right shift), and
-<code>@&gt;</code> (rotate right).
-
-</li>
-
-<li>
-<code>[R0,g,R12-R15]</code>: For multi-register instructions, the set comprising
-<code>R0</code>, <code>g</code>, and <code>R12</code> through <code>R15</code> inclusive.
-</li>
-
-<li>
-<code>(R5, R6)</code>: Destination register pair.
-</li>
-
-</ul>
-
-<h3 id="arm64">ARM64</h3>
-
-<p>
-The ARM64 port is in an experimental state.
-</p>
-
-<p>
-<code>R18</code> is the "platform register", reserved on the Apple platform.
-<code>R27</code> and <code>R28</code> are reserved by the compiler and linker.
-<code>R29</code> is the frame pointer.
-<code>R30</code> is the link register.
-</p>
-
-<p>
-Instruction modifiers are appended to the instruction following a period.
-The only modifiers are <code>P</code> (postincrement) and <code>W</code>
-(preincrement):
-<code>MOVW.P</code>, <code>MOVW.W</code>
-</p>
-
-<p>
-Addressing modes:
-</p>
-
-<ul>
-
-<li>
-<code>R0-&gt;16</code>
-<br>
-<code>R0&gt;&gt;16</code>
-<br>
-<code>R0&lt;&lt;16</code>
-<br>
-<code>R0@&gt;16</code>:
-These are the same as on the 32-bit ARM.
-</li>
-
-<li>
-<code>$(8&lt;&lt;12)</code>:
-Left shift the immediate value <code>8</code> by <code>12</code> bits.
-</li>
-
-<li>
-<code>8(R0)</code>:
-Add the value of <code>R0</code> and <code>8</code>.
-</li>
-
-<li>
-<code>(R2)(R0)</code>:
-The location at <code>R0</code> plus <code>R2</code>.
-</li>
-
-<li>
-<code>R0.UXTB</code>
-<br>
-<code>R0.UXTB&lt;&lt;imm</code>:
-<code>UXTB</code>: extract an 8-bit value from the low-order bits of <code>R0</code> and zero-extend it to the size of <code>R0</code>.
-<code>R0.UXTB&lt;&lt;imm</code>: left shift the result of <code>R0.UXTB</code> by <code>imm</code> bits.
-The <code>imm</code> value can be 0, 1, 2, 3, or 4.
-The other extensions include <code>UXTH</code> (16-bit), <code>UXTW</code> (32-bit), and <code>UXTX</code> (64-bit).
-</li>
-
-<li>
-<code>R0.SXTB</code>
-<br>
-<code>R0.SXTB&lt;&lt;imm</code>:
-<code>SXTB</code>: extract an 8-bit value from the low-order bits of <code>R0</code> and sign-extend it to the size of <code>R0</code>.
-<code>R0.SXTB&lt;&lt;imm</code>: left shift the result of <code>R0.SXTB</code> by <code>imm</code> bits.
-The <code>imm</code> value can be 0, 1, 2, 3, or 4.
-The other extensions include <code>SXTH</code> (16-bit), <code>SXTW</code> (32-bit), and <code>SXTX</code> (64-bit).
-</li>
-
-<li>
-<code>(R5, R6)</code>: Register pair for <code>LDAXP</code>/<code>LDP</code>/<code>LDXP</code>/<code>STLXP</code>/<code>STP</code>/<code>STP</code>.
-</li>
-
-</ul>
-
-<p>
-Reference: <a href="/pkg/cmd/internal/obj/arm64">Go ARM64 Assembly Instructions Reference Manual</a>
-</p>
-
-<h3 id="ppc64">64-bit PowerPC, a.k.a. ppc64</h3>
-
-<p>
-The 64-bit PowerPC port is in an experimental state.
-</p>
-
-<p>
-Addressing modes:
-</p>
-
-<ul>
-
-<li>
-<code>(R5)(R6*1)</code>: The location at <code>R5</code> plus <code>R6</code>. It is a scaled
-mode as on the x86, but the only scale allowed is <code>1</code>.
-</li>
-
-<li>
-<code>(R5+R6)</code>: Alias for (R5)(R6*1)
-</li>
-
-</ul>
-
-<h3 id="s390x">IBM z/Architecture, a.k.a. s390x</h3>
-
-<p>
-The registers <code>R10</code> and <code>R11</code> are reserved.
-The assembler uses them to hold temporary values when assembling some instructions.
-</p>
-
-<p>
-<code>R13</code> points to the <code>g</code> (goroutine) structure.
-This register must be referred to as <code>g</code>; the name <code>R13</code> is not recognized.
-</p>
-
-<p>
-<code>R15</code> points to the stack frame and should typically only be accessed using the
-virtual registers <code>SP</code> and <code>FP</code>.
-</p>
-
-<p>
-Load- and store-multiple instructions operate on a range of registers.
-The range of registers is specified by a start register and an end register.
-For example, <code>LMG</code> <code>(R9),</code> <code>R5,</code> <code>R7</code> would load
-<code>R5</code>, <code>R6</code> and <code>R7</code> with the 64-bit values at
-<code>0(R9)</code>, <code>8(R9)</code> and <code>16(R9)</code> respectively.
-</p>
-
-<p>
-Storage-and-storage instructions such as <code>MVC</code> and <code>XC</code> are written
-with the length as the first argument.
-For example, <code>XC</code> <code>$8,</code> <code>(R9),</code> <code>(R9)</code> would clear
-eight bytes at the address specified in <code>R9</code>.
-</p>
-
-<p>
-If a vector instruction takes a length or an index as an argument then it will be the
-first argument.
-For example, <code>VLEIF</code> <code>$1,</code> <code>$16,</code> <code>V2</code> will load
-the value sixteen into index one of <code>V2</code>.
-Care should be taken when using vector instructions to ensure that they are available at
-runtime.
-To use vector instructions a machine must have both the vector facility (bit 129 in the
-facility list) and kernel support.
-Without kernel support a vector instruction will have no effect (it will be equivalent
-to a <code>NOP</code> instruction).
-</p>
-
-<p>
-Addressing modes:
-</p>
-
-<ul>
-
-<li>
-<code>(R5)(R6*1)</code>: The location at <code>R5</code> plus <code>R6</code>.
-It is a scaled mode as on the x86, but the only scale allowed is <code>1</code>.
-</li>
-
-</ul>
-
-<h3 id="mips">MIPS, MIPS64</h3>
-
-<p>
-General purpose registers are named <code>R0</code> through <code>R31</code>,
-floating point registers are <code>F0</code> through <code>F31</code>.
-</p>
-
-<p>
-<code>R30</code> is reserved to point to <code>g</code>.
-<code>R23</code> is used as a temporary register.
-</p>
-
-<p>
-In a <code>TEXT</code> directive, the frame size <code>$-4</code> for MIPS or
-<code>$-8</code> for MIPS64 instructs the linker not to save <code>LR</code>.
-</p>
-
-<p>
-<code>SP</code> refers to the virtual stack pointer.
-For the hardware register, use <code>R29</code>.
-</p>
-
-<p>
-Addressing modes:
-</p>
-
-<ul>
-
-<li>
-<code>16(R1)</code>: The location at <code>R1</code> plus 16.
-</li>
-
-<li>
-<code>(R1)</code>: Alias for <code>0(R1)</code>.
-</li>
-
-</ul>
-
-<p>
-The value of <code>GOMIPS</code> environment variable (<code>hardfloat</code> or
-<code>softfloat</code>) is made available to assembly code by predefining either
-<code>GOMIPS_hardfloat</code> or <code>GOMIPS_softfloat</code>.
-</p>
-
-<p>
-The value of <code>GOMIPS64</code> environment variable (<code>hardfloat</code> or
-<code>softfloat</code>) is made available to assembly code by predefining either
-<code>GOMIPS64_hardfloat</code> or <code>GOMIPS64_softfloat</code>.
-</p>
-
-<h3 id="unsupported_opcodes">Unsupported opcodes</h3>
-
-<p>
-The assemblers are designed to support the compiler so not all hardware instructions
-are defined for all architectures: if the compiler doesn't generate it, it might not be there.
-If you need to use a missing instruction, there are two ways to proceed.
-One is to update the assembler to support that instruction, which is straightforward
-but only worthwhile if it's likely the instruction will be used again.
-Instead, for simple one-off cases, it's possible to use the <code>BYTE</code>
-and <code>WORD</code> directives
-to lay down explicit data into the instruction stream within a <code>TEXT</code>.
-Here's how the 386 runtime defines the 64-bit atomic load function.
-</p>
-
-<pre>
-// uint64 atomicload64(uint64 volatile* addr);
-// so actually
-// void atomicload64(uint64 *res, uint64 volatile *addr);
-TEXT runtime·atomicload64(SB), NOSPLIT, $0-12
- MOVL ptr+0(FP), AX
- TESTL $7, AX
- JZ 2(PC)
- MOVL 0, AX // crash with nil ptr deref
- LEAL ret_lo+4(FP), BX
- // MOVQ (%EAX), %MM0
- BYTE $0x0f; BYTE $0x6f; BYTE $0x00
- // MOVQ %MM0, 0(%EBX)
- BYTE $0x0f; BYTE $0x7f; BYTE $0x03
- // EMMS
- BYTE $0x0F; BYTE $0x77
- RET
-</pre>