summaryrefslogtreecommitdiff
path: root/app/openssl/ssl/s3_cbc.c
diff options
context:
space:
mode:
Diffstat (limited to 'app/openssl/ssl/s3_cbc.c')
-rw-r--r--app/openssl/ssl/s3_cbc.c790
1 files changed, 790 insertions, 0 deletions
diff --git a/app/openssl/ssl/s3_cbc.c b/app/openssl/ssl/s3_cbc.c
new file mode 100644
index 00000000..443a31e7
--- /dev/null
+++ b/app/openssl/ssl/s3_cbc.c
@@ -0,0 +1,790 @@
+/* ssl/s3_cbc.c */
+/* ====================================================================
+ * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ * software must display the following acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ * endorse or promote products derived from this software without
+ * prior written permission. For written permission, please contact
+ * openssl-core@openssl.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ * nor may "OpenSSL" appear in their names without prior written
+ * permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ * acknowledgment:
+ * "This product includes software developed by the OpenSSL Project
+ * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ *
+ * This product includes cryptographic software written by Eric Young
+ * (eay@cryptsoft.com). This product includes software written by Tim
+ * Hudson (tjh@cryptsoft.com).
+ *
+ */
+
+#include "ssl_locl.h"
+
+#include <openssl/md5.h>
+#include <openssl/sha.h>
+
+/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
+ * field. (SHA-384/512 have 128-bit length.) */
+#define MAX_HASH_BIT_COUNT_BYTES 16
+
+/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
+ * Currently SHA-384/512 has a 128-byte block size and that's the largest
+ * supported by TLS.) */
+#define MAX_HASH_BLOCK_SIZE 128
+
+/* Some utility functions are needed:
+ *
+ * These macros return the given value with the MSB copied to all the other
+ * bits. They use the fact that arithmetic shift shifts-in the sign bit.
+ * However, this is not ensured by the C standard so you may need to replace
+ * them with something else on odd CPUs. */
+#define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
+#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
+
+/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
+static unsigned constant_time_lt(unsigned a, unsigned b)
+ {
+ a -= b;
+ return DUPLICATE_MSB_TO_ALL(a);
+ }
+
+/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
+static unsigned constant_time_ge(unsigned a, unsigned b)
+ {
+ a -= b;
+ return DUPLICATE_MSB_TO_ALL(~a);
+ }
+
+/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
+static unsigned char constant_time_eq_8(unsigned a, unsigned b)
+ {
+ unsigned c = a ^ b;
+ c--;
+ return DUPLICATE_MSB_TO_ALL_8(c);
+ }
+
+/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
+ * record in |rec| by updating |rec->length| in constant time.
+ *
+ * block_size: the block size of the cipher used to encrypt the record.
+ * returns:
+ * 0: (in non-constant time) if the record is publicly invalid.
+ * 1: if the padding was valid
+ * -1: otherwise. */
+int ssl3_cbc_remove_padding(const SSL* s,
+ SSL3_RECORD *rec,
+ unsigned block_size,
+ unsigned mac_size)
+ {
+ unsigned padding_length, good;
+ const unsigned overhead = 1 /* padding length byte */ + mac_size;
+
+ /* These lengths are all public so we can test them in non-constant
+ * time. */
+ if (overhead > rec->length)
+ return 0;
+
+ padding_length = rec->data[rec->length-1];
+ good = constant_time_ge(rec->length, padding_length+overhead);
+ /* SSLv3 requires that the padding is minimal. */
+ good &= constant_time_ge(block_size, padding_length+1);
+ padding_length = good & (padding_length+1);
+ rec->length -= padding_length;
+ rec->type |= padding_length<<8; /* kludge: pass padding length */
+ return (int)((good & 1) | (~good & -1));
+}
+
+/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
+ * record in |rec| in constant time and returns 1 if the padding is valid and
+ * -1 otherwise. It also removes any explicit IV from the start of the record
+ * without leaking any timing about whether there was enough space after the
+ * padding was removed.
+ *
+ * block_size: the block size of the cipher used to encrypt the record.
+ * returns:
+ * 0: (in non-constant time) if the record is publicly invalid.
+ * 1: if the padding was valid
+ * -1: otherwise. */
+int tls1_cbc_remove_padding(const SSL* s,
+ SSL3_RECORD *rec,
+ unsigned block_size,
+ unsigned mac_size)
+ {
+ unsigned padding_length, good, to_check, i;
+ const unsigned overhead = 1 /* padding length byte */ + mac_size;
+ /* Check if version requires explicit IV */
+ if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
+ {
+ /* These lengths are all public so we can test them in
+ * non-constant time.
+ */
+ if (overhead + block_size > rec->length)
+ return 0;
+ /* We can now safely skip explicit IV */
+ rec->data += block_size;
+ rec->input += block_size;
+ rec->length -= block_size;
+ }
+ else if (overhead > rec->length)
+ return 0;
+
+ padding_length = rec->data[rec->length-1];
+
+ /* NB: if compression is in operation the first packet may not be of
+ * even length so the padding bug check cannot be performed. This bug
+ * workaround has been around since SSLeay so hopefully it is either
+ * fixed now or no buggy implementation supports compression [steve]
+ */
+ if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
+ {
+ /* First packet is even in size, so check */
+ if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
+ !(padding_length & 1))
+ {
+ s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
+ }
+ if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
+ padding_length > 0)
+ {
+ padding_length--;
+ }
+ }
+
+ if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
+ {
+ /* padding is already verified */
+ rec->length -= padding_length + 1;
+ return 1;
+ }
+
+ good = constant_time_ge(rec->length, overhead+padding_length);
+ /* The padding consists of a length byte at the end of the record and
+ * then that many bytes of padding, all with the same value as the
+ * length byte. Thus, with the length byte included, there are i+1
+ * bytes of padding.
+ *
+ * We can't check just |padding_length+1| bytes because that leaks
+ * decrypted information. Therefore we always have to check the maximum
+ * amount of padding possible. (Again, the length of the record is
+ * public information so we can use it.) */
+ to_check = 255; /* maximum amount of padding. */
+ if (to_check > rec->length-1)
+ to_check = rec->length-1;
+
+ for (i = 0; i < to_check; i++)
+ {
+ unsigned char mask = constant_time_ge(padding_length, i);
+ unsigned char b = rec->data[rec->length-1-i];
+ /* The final |padding_length+1| bytes should all have the value
+ * |padding_length|. Therefore the XOR should be zero. */
+ good &= ~(mask&(padding_length ^ b));
+ }
+
+ /* If any of the final |padding_length+1| bytes had the wrong value,
+ * one or more of the lower eight bits of |good| will be cleared. We
+ * AND the bottom 8 bits together and duplicate the result to all the
+ * bits. */
+ good &= good >> 4;
+ good &= good >> 2;
+ good &= good >> 1;
+ good <<= sizeof(good)*8-1;
+ good = DUPLICATE_MSB_TO_ALL(good);
+
+ padding_length = good & (padding_length+1);
+ rec->length -= padding_length;
+ rec->type |= padding_length<<8; /* kludge: pass padding length */
+
+ return (int)((good & 1) | (~good & -1));
+ }
+
+/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
+ * constant time (independent of the concrete value of rec->length, which may
+ * vary within a 256-byte window).
+ *
+ * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
+ * this function.
+ *
+ * On entry:
+ * rec->orig_len >= md_size
+ * md_size <= EVP_MAX_MD_SIZE
+ *
+ * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
+ * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
+ * a single or pair of cache-lines, then the variable memory accesses don't
+ * actually affect the timing. CPUs with smaller cache-lines [if any] are
+ * not multi-core and are not considered vulnerable to cache-timing attacks.
+ */
+#define CBC_MAC_ROTATE_IN_PLACE
+
+void ssl3_cbc_copy_mac(unsigned char* out,
+ const SSL3_RECORD *rec,
+ unsigned md_size,unsigned orig_len)
+ {
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
+ unsigned char *rotated_mac;
+#else
+ unsigned char rotated_mac[EVP_MAX_MD_SIZE];
+#endif
+
+ /* mac_end is the index of |rec->data| just after the end of the MAC. */
+ unsigned mac_end = rec->length;
+ unsigned mac_start = mac_end - md_size;
+ /* scan_start contains the number of bytes that we can ignore because
+ * the MAC's position can only vary by 255 bytes. */
+ unsigned scan_start = 0;
+ unsigned i, j;
+ unsigned div_spoiler;
+ unsigned rotate_offset;
+
+ OPENSSL_assert(orig_len >= md_size);
+ OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
+
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
+#endif
+
+ /* This information is public so it's safe to branch based on it. */
+ if (orig_len > md_size + 255 + 1)
+ scan_start = orig_len - (md_size + 255 + 1);
+ /* div_spoiler contains a multiple of md_size that is used to cause the
+ * modulo operation to be constant time. Without this, the time varies
+ * based on the amount of padding when running on Intel chips at least.
+ *
+ * The aim of right-shifting md_size is so that the compiler doesn't
+ * figure out that it can remove div_spoiler as that would require it
+ * to prove that md_size is always even, which I hope is beyond it. */
+ div_spoiler = md_size >> 1;
+ div_spoiler <<= (sizeof(div_spoiler)-1)*8;
+ rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
+
+ memset(rotated_mac, 0, md_size);
+ for (i = scan_start, j = 0; i < orig_len; i++)
+ {
+ unsigned char mac_started = constant_time_ge(i, mac_start);
+ unsigned char mac_ended = constant_time_ge(i, mac_end);
+ unsigned char b = rec->data[i];
+ rotated_mac[j++] |= b & mac_started & ~mac_ended;
+ j &= constant_time_lt(j,md_size);
+ }
+
+ /* Now rotate the MAC */
+#if defined(CBC_MAC_ROTATE_IN_PLACE)
+ j = 0;
+ for (i = 0; i < md_size; i++)
+ {
+ /* in case cache-line is 32 bytes, touch second line */
+ ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
+ out[j++] = rotated_mac[rotate_offset++];
+ rotate_offset &= constant_time_lt(rotate_offset,md_size);
+ }
+#else
+ memset(out, 0, md_size);
+ rotate_offset = md_size - rotate_offset;
+ rotate_offset &= constant_time_lt(rotate_offset,md_size);
+ for (i = 0; i < md_size; i++)
+ {
+ for (j = 0; j < md_size; j++)
+ out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
+ rotate_offset++;
+ rotate_offset &= constant_time_lt(rotate_offset,md_size);
+ }
+#endif
+ }
+
+/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
+ * little-endian order. The value of p is advanced by four. */
+#define u32toLE(n, p) \
+ (*((p)++)=(unsigned char)(n), \
+ *((p)++)=(unsigned char)(n>>8), \
+ *((p)++)=(unsigned char)(n>>16), \
+ *((p)++)=(unsigned char)(n>>24))
+
+/* These functions serialize the state of a hash and thus perform the standard
+ * "final" operation without adding the padding and length that such a function
+ * typically does. */
+static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
+ {
+ MD5_CTX *md5 = ctx;
+ u32toLE(md5->A, md_out);
+ u32toLE(md5->B, md_out);
+ u32toLE(md5->C, md_out);
+ u32toLE(md5->D, md_out);
+ }
+
+static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
+ {
+ SHA_CTX *sha1 = ctx;
+ l2n(sha1->h0, md_out);
+ l2n(sha1->h1, md_out);
+ l2n(sha1->h2, md_out);
+ l2n(sha1->h3, md_out);
+ l2n(sha1->h4, md_out);
+ }
+#define LARGEST_DIGEST_CTX SHA_CTX
+
+#ifndef OPENSSL_NO_SHA256
+static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
+ {
+ SHA256_CTX *sha256 = ctx;
+ unsigned i;
+
+ for (i = 0; i < 8; i++)
+ {
+ l2n(sha256->h[i], md_out);
+ }
+ }
+#undef LARGEST_DIGEST_CTX
+#define LARGEST_DIGEST_CTX SHA256_CTX
+#endif
+
+#ifndef OPENSSL_NO_SHA512
+static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
+ {
+ SHA512_CTX *sha512 = ctx;
+ unsigned i;
+
+ for (i = 0; i < 8; i++)
+ {
+ l2n8(sha512->h[i], md_out);
+ }
+ }
+#undef LARGEST_DIGEST_CTX
+#define LARGEST_DIGEST_CTX SHA512_CTX
+#endif
+
+/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
+ * which ssl3_cbc_digest_record supports. */
+char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
+ {
+#ifdef OPENSSL_FIPS
+ if (FIPS_mode())
+ return 0;
+#endif
+ switch (EVP_MD_CTX_type(ctx))
+ {
+ case NID_md5:
+ case NID_sha1:
+#ifndef OPENSSL_NO_SHA256
+ case NID_sha224:
+ case NID_sha256:
+#endif
+#ifndef OPENSSL_NO_SHA512
+ case NID_sha384:
+ case NID_sha512:
+#endif
+ return 1;
+ default:
+ return 0;
+ }
+ }
+
+/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
+ * record.
+ *
+ * ctx: the EVP_MD_CTX from which we take the hash function.
+ * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
+ * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
+ * md_out_size: if non-NULL, the number of output bytes is written here.
+ * header: the 13-byte, TLS record header.
+ * data: the record data itself, less any preceeding explicit IV.
+ * data_plus_mac_size: the secret, reported length of the data and MAC
+ * once the padding has been removed.
+ * data_plus_mac_plus_padding_size: the public length of the whole
+ * record, including padding.
+ * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
+ *
+ * On entry: by virtue of having been through one of the remove_padding
+ * functions, above, we know that data_plus_mac_size is large enough to contain
+ * a padding byte and MAC. (If the padding was invalid, it might contain the
+ * padding too. ) */
+void ssl3_cbc_digest_record(
+ const EVP_MD_CTX *ctx,
+ unsigned char* md_out,
+ size_t* md_out_size,
+ const unsigned char header[13],
+ const unsigned char *data,
+ size_t data_plus_mac_size,
+ size_t data_plus_mac_plus_padding_size,
+ const unsigned char *mac_secret,
+ unsigned mac_secret_length,
+ char is_sslv3)
+ {
+ union { double align;
+ unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
+ void (*md_final_raw)(void *ctx, unsigned char *md_out);
+ void (*md_transform)(void *ctx, const unsigned char *block);
+ unsigned md_size, md_block_size = 64;
+ unsigned sslv3_pad_length = 40, header_length, variance_blocks,
+ len, max_mac_bytes, num_blocks,
+ num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
+ unsigned int bits; /* at most 18 bits */
+ unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
+ /* hmac_pad is the masked HMAC key. */
+ unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
+ unsigned char first_block[MAX_HASH_BLOCK_SIZE];
+ unsigned char mac_out[EVP_MAX_MD_SIZE];
+ unsigned i, j, md_out_size_u;
+ EVP_MD_CTX md_ctx;
+ /* mdLengthSize is the number of bytes in the length field that terminates
+ * the hash. */
+ unsigned md_length_size = 8;
+ char length_is_big_endian = 1;
+
+ /* This is a, hopefully redundant, check that allows us to forget about
+ * many possible overflows later in this function. */
+ OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
+
+ switch (EVP_MD_CTX_type(ctx))
+ {
+ case NID_md5:
+ MD5_Init((MD5_CTX*)md_state.c);
+ md_final_raw = tls1_md5_final_raw;
+ md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
+ md_size = 16;
+ sslv3_pad_length = 48;
+ length_is_big_endian = 0;
+ break;
+ case NID_sha1:
+ SHA1_Init((SHA_CTX*)md_state.c);
+ md_final_raw = tls1_sha1_final_raw;
+ md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
+ md_size = 20;
+ break;
+#ifndef OPENSSL_NO_SHA256
+ case NID_sha224:
+ SHA224_Init((SHA256_CTX*)md_state.c);
+ md_final_raw = tls1_sha256_final_raw;
+ md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
+ md_size = 224/8;
+ break;
+ case NID_sha256:
+ SHA256_Init((SHA256_CTX*)md_state.c);
+ md_final_raw = tls1_sha256_final_raw;
+ md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
+ md_size = 32;
+ break;
+#endif
+#ifndef OPENSSL_NO_SHA512
+ case NID_sha384:
+ SHA384_Init((SHA512_CTX*)md_state.c);
+ md_final_raw = tls1_sha512_final_raw;
+ md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
+ md_size = 384/8;
+ md_block_size = 128;
+ md_length_size = 16;
+ break;
+ case NID_sha512:
+ SHA512_Init((SHA512_CTX*)md_state.c);
+ md_final_raw = tls1_sha512_final_raw;
+ md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
+ md_size = 64;
+ md_block_size = 128;
+ md_length_size = 16;
+ break;
+#endif
+ default:
+ /* ssl3_cbc_record_digest_supported should have been
+ * called first to check that the hash function is
+ * supported. */
+ OPENSSL_assert(0);
+ if (md_out_size)
+ *md_out_size = -1;
+ return;
+ }
+
+ OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
+ OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
+ OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
+
+ header_length = 13;
+ if (is_sslv3)
+ {
+ header_length =
+ mac_secret_length +
+ sslv3_pad_length +
+ 8 /* sequence number */ +
+ 1 /* record type */ +
+ 2 /* record length */;
+ }
+
+ /* variance_blocks is the number of blocks of the hash that we have to
+ * calculate in constant time because they could be altered by the
+ * padding value.
+ *
+ * In SSLv3, the padding must be minimal so the end of the plaintext
+ * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
+ * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
+ * termination (0x80 + 64-bit length) don't fit in the final block, we
+ * say that the final two blocks can vary based on the padding.
+ *
+ * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
+ * required to be minimal. Therefore we say that the final six blocks
+ * can vary based on the padding.
+ *
+ * Later in the function, if the message is short and there obviously
+ * cannot be this many blocks then variance_blocks can be reduced. */
+ variance_blocks = is_sslv3 ? 2 : 6;
+ /* From now on we're dealing with the MAC, which conceptually has 13
+ * bytes of `header' before the start of the data (TLS) or 71/75 bytes
+ * (SSLv3) */
+ len = data_plus_mac_plus_padding_size + header_length;
+ /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
+ * |header|, assuming that there's no padding. */
+ max_mac_bytes = len - md_size - 1;
+ /* num_blocks is the maximum number of hash blocks. */
+ num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
+ /* In order to calculate the MAC in constant time we have to handle
+ * the final blocks specially because the padding value could cause the
+ * end to appear somewhere in the final |variance_blocks| blocks and we
+ * can't leak where. However, |num_starting_blocks| worth of data can
+ * be hashed right away because no padding value can affect whether
+ * they are plaintext. */
+ num_starting_blocks = 0;
+ /* k is the starting byte offset into the conceptual header||data where
+ * we start processing. */
+ k = 0;
+ /* mac_end_offset is the index just past the end of the data to be
+ * MACed. */
+ mac_end_offset = data_plus_mac_size + header_length - md_size;
+ /* c is the index of the 0x80 byte in the final hash block that
+ * contains application data. */
+ c = mac_end_offset % md_block_size;
+ /* index_a is the hash block number that contains the 0x80 terminating
+ * value. */
+ index_a = mac_end_offset / md_block_size;
+ /* index_b is the hash block number that contains the 64-bit hash
+ * length, in bits. */
+ index_b = (mac_end_offset + md_length_size) / md_block_size;
+ /* bits is the hash-length in bits. It includes the additional hash
+ * block for the masked HMAC key, or whole of |header| in the case of
+ * SSLv3. */
+
+ /* For SSLv3, if we're going to have any starting blocks then we need
+ * at least two because the header is larger than a single block. */
+ if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
+ {
+ num_starting_blocks = num_blocks - variance_blocks;
+ k = md_block_size*num_starting_blocks;
+ }
+
+ bits = 8*mac_end_offset;
+ if (!is_sslv3)
+ {
+ /* Compute the initial HMAC block. For SSLv3, the padding and
+ * secret bytes are included in |header| because they take more
+ * than a single block. */
+ bits += 8*md_block_size;
+ memset(hmac_pad, 0, md_block_size);
+ OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
+ memcpy(hmac_pad, mac_secret, mac_secret_length);
+ for (i = 0; i < md_block_size; i++)
+ hmac_pad[i] ^= 0x36;
+
+ md_transform(md_state.c, hmac_pad);
+ }
+
+ if (length_is_big_endian)
+ {
+ memset(length_bytes,0,md_length_size-4);
+ length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
+ length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
+ length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
+ length_bytes[md_length_size-1] = (unsigned char)bits;
+ }
+ else
+ {
+ memset(length_bytes,0,md_length_size);
+ length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
+ length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
+ length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
+ length_bytes[md_length_size-8] = (unsigned char)bits;
+ }
+
+ if (k > 0)
+ {
+ if (is_sslv3)
+ {
+ /* The SSLv3 header is larger than a single block.
+ * overhang is the number of bytes beyond a single
+ * block that the header consumes: either 7 bytes
+ * (SHA1) or 11 bytes (MD5). */
+ unsigned overhang = header_length-md_block_size;
+ md_transform(md_state.c, header);
+ memcpy(first_block, header + md_block_size, overhang);
+ memcpy(first_block + overhang, data, md_block_size-overhang);
+ md_transform(md_state.c, first_block);
+ for (i = 1; i < k/md_block_size - 1; i++)
+ md_transform(md_state.c, data + md_block_size*i - overhang);
+ }
+ else
+ {
+ /* k is a multiple of md_block_size. */
+ memcpy(first_block, header, 13);
+ memcpy(first_block+13, data, md_block_size-13);
+ md_transform(md_state.c, first_block);
+ for (i = 1; i < k/md_block_size; i++)
+ md_transform(md_state.c, data + md_block_size*i - 13);
+ }
+ }
+
+ memset(mac_out, 0, sizeof(mac_out));
+
+ /* We now process the final hash blocks. For each block, we construct
+ * it in constant time. If the |i==index_a| then we'll include the 0x80
+ * bytes and zero pad etc. For each block we selectively copy it, in
+ * constant time, to |mac_out|. */
+ for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
+ {
+ unsigned char block[MAX_HASH_BLOCK_SIZE];
+ unsigned char is_block_a = constant_time_eq_8(i, index_a);
+ unsigned char is_block_b = constant_time_eq_8(i, index_b);
+ for (j = 0; j < md_block_size; j++)
+ {
+ unsigned char b = 0, is_past_c, is_past_cp1;
+ if (k < header_length)
+ b = header[k];
+ else if (k < data_plus_mac_plus_padding_size + header_length)
+ b = data[k-header_length];
+ k++;
+
+ is_past_c = is_block_a & constant_time_ge(j, c);
+ is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
+ /* If this is the block containing the end of the
+ * application data, and we are at the offset for the
+ * 0x80 value, then overwrite b with 0x80. */
+ b = (b&~is_past_c) | (0x80&is_past_c);
+ /* If this the the block containing the end of the
+ * application data and we're past the 0x80 value then
+ * just write zero. */
+ b = b&~is_past_cp1;
+ /* If this is index_b (the final block), but not
+ * index_a (the end of the data), then the 64-bit
+ * length didn't fit into index_a and we're having to
+ * add an extra block of zeros. */
+ b &= ~is_block_b | is_block_a;
+
+ /* The final bytes of one of the blocks contains the
+ * length. */
+ if (j >= md_block_size - md_length_size)
+ {
+ /* If this is index_b, write a length byte. */
+ b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]);
+ }
+ block[j] = b;
+ }
+
+ md_transform(md_state.c, block);
+ md_final_raw(md_state.c, block);
+ /* If this is index_b, copy the hash value to |mac_out|. */
+ for (j = 0; j < md_size; j++)
+ mac_out[j] |= block[j]&is_block_b;
+ }
+
+ EVP_MD_CTX_init(&md_ctx);
+ EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
+ if (is_sslv3)
+ {
+ /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
+ memset(hmac_pad, 0x5c, sslv3_pad_length);
+
+ EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
+ EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
+ EVP_DigestUpdate(&md_ctx, mac_out, md_size);
+ }
+ else
+ {
+ /* Complete the HMAC in the standard manner. */
+ for (i = 0; i < md_block_size; i++)
+ hmac_pad[i] ^= 0x6a;
+
+ EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
+ EVP_DigestUpdate(&md_ctx, mac_out, md_size);
+ }
+ EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
+ if (md_out_size)
+ *md_out_size = md_out_size_u;
+ EVP_MD_CTX_cleanup(&md_ctx);
+ }
+
+#ifdef OPENSSL_FIPS
+
+/* Due to the need to use EVP in FIPS mode we can't reimplement digests but
+ * we can ensure the number of blocks processed is equal for all cases
+ * by digesting additional data.
+ */
+
+void tls_fips_digest_extra(
+ const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
+ const unsigned char *data, size_t data_len, size_t orig_len)
+ {
+ size_t block_size, digest_pad, blocks_data, blocks_orig;
+ if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
+ return;
+ block_size = EVP_MD_CTX_block_size(mac_ctx);
+ /* We are in FIPS mode if we get this far so we know we have only SHA*
+ * digests and TLS to deal with.
+ * Minimum digest padding length is 17 for SHA384/SHA512 and 9
+ * otherwise.
+ * Additional header is 13 bytes. To get the number of digest blocks
+ * processed round up the amount of data plus padding to the nearest
+ * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
+ * So we have:
+ * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
+ * equivalently:
+ * blocks = (payload_len + digest_pad + 12)/block_size + 1
+ * HMAC adds a constant overhead.
+ * We're ultimately only interested in differences so this becomes
+ * blocks = (payload_len + 29)/128
+ * for SHA384/SHA512 and
+ * blocks = (payload_len + 21)/64
+ * otherwise.
+ */
+ digest_pad = block_size == 64 ? 21 : 29;
+ blocks_orig = (orig_len + digest_pad)/block_size;
+ blocks_data = (data_len + digest_pad)/block_size;
+ /* MAC enough blocks to make up the difference between the original
+ * and actual lengths plus one extra block to ensure this is never a
+ * no op. The "data" pointer should always have enough space to
+ * perform this operation as it is large enough for a maximum
+ * length TLS buffer.
+ */
+ EVP_DigestSignUpdate(mac_ctx, data,
+ (blocks_orig - blocks_data + 1) * block_size);
+ }
+#endif