diff options
Diffstat (limited to 'app/openssl/crypto/modes/asm/ghash-x86.pl')
-rw-r--r-- | app/openssl/crypto/modes/asm/ghash-x86.pl | 1342 |
1 files changed, 0 insertions, 1342 deletions
diff --git a/app/openssl/crypto/modes/asm/ghash-x86.pl b/app/openssl/crypto/modes/asm/ghash-x86.pl deleted file mode 100644 index 2426cd0c..00000000 --- a/app/openssl/crypto/modes/asm/ghash-x86.pl +++ /dev/null @@ -1,1342 +0,0 @@ -#!/usr/bin/env perl -# -# ==================================================================== -# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL -# project. The module is, however, dual licensed under OpenSSL and -# CRYPTOGAMS licenses depending on where you obtain it. For further -# details see http://www.openssl.org/~appro/cryptogams/. -# ==================================================================== -# -# March, May, June 2010 -# -# The module implements "4-bit" GCM GHASH function and underlying -# single multiplication operation in GF(2^128). "4-bit" means that it -# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two -# code paths: vanilla x86 and vanilla MMX. Former will be executed on -# 486 and Pentium, latter on all others. MMX GHASH features so called -# "528B" variant of "4-bit" method utilizing additional 256+16 bytes -# of per-key storage [+512 bytes shared table]. Performance results -# are for streamed GHASH subroutine and are expressed in cycles per -# processed byte, less is better: -# -# gcc 2.95.3(*) MMX assembler x86 assembler -# -# Pentium 105/111(**) - 50 -# PIII 68 /75 12.2 24 -# P4 125/125 17.8 84(***) -# Opteron 66 /70 10.1 30 -# Core2 54 /67 8.4 18 -# -# (*) gcc 3.4.x was observed to generate few percent slower code, -# which is one of reasons why 2.95.3 results were chosen, -# another reason is lack of 3.4.x results for older CPUs; -# comparison with MMX results is not completely fair, because C -# results are for vanilla "256B" implementation, while -# assembler results are for "528B";-) -# (**) second number is result for code compiled with -fPIC flag, -# which is actually more relevant, because assembler code is -# position-independent; -# (***) see comment in non-MMX routine for further details; -# -# To summarize, it's >2-5 times faster than gcc-generated code. To -# anchor it to something else SHA1 assembler processes one byte in -# 11-13 cycles on contemporary x86 cores. As for choice of MMX in -# particular, see comment at the end of the file... - -# May 2010 -# -# Add PCLMULQDQ version performing at 2.10 cycles per processed byte. -# The question is how close is it to theoretical limit? The pclmulqdq -# instruction latency appears to be 14 cycles and there can't be more -# than 2 of them executing at any given time. This means that single -# Karatsuba multiplication would take 28 cycles *plus* few cycles for -# pre- and post-processing. Then multiplication has to be followed by -# modulo-reduction. Given that aggregated reduction method [see -# "Carry-less Multiplication and Its Usage for Computing the GCM Mode" -# white paper by Intel] allows you to perform reduction only once in -# a while we can assume that asymptotic performance can be estimated -# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction -# and Naggr is the aggregation factor. -# -# Before we proceed to this implementation let's have closer look at -# the best-performing code suggested by Intel in their white paper. -# By tracing inter-register dependencies Tmod is estimated as ~19 -# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per -# processed byte. As implied, this is quite optimistic estimate, -# because it does not account for Karatsuba pre- and post-processing, -# which for a single multiplication is ~5 cycles. Unfortunately Intel -# does not provide performance data for GHASH alone. But benchmarking -# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt -# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that -# the result accounts even for pre-computing of degrees of the hash -# key H, but its portion is negligible at 16KB buffer size. -# -# Moving on to the implementation in question. Tmod is estimated as -# ~13 cycles and Naggr is 2, giving asymptotic performance of ... -# 2.16. How is it possible that measured performance is better than -# optimistic theoretical estimate? There is one thing Intel failed -# to recognize. By serializing GHASH with CTR in same subroutine -# former's performance is really limited to above (Tmul + Tmod/Naggr) -# equation. But if GHASH procedure is detached, the modulo-reduction -# can be interleaved with Naggr-1 multiplications at instruction level -# and under ideal conditions even disappear from the equation. So that -# optimistic theoretical estimate for this implementation is ... -# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic, -# at least for such small Naggr. I'd argue that (28+Tproc/Naggr), -# where Tproc is time required for Karatsuba pre- and post-processing, -# is more realistic estimate. In this case it gives ... 1.91 cycles. -# Or in other words, depending on how well we can interleave reduction -# and one of the two multiplications the performance should be betwen -# 1.91 and 2.16. As already mentioned, this implementation processes -# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart -# - in 2.02. x86_64 performance is better, because larger register -# bank allows to interleave reduction and multiplication better. -# -# Does it make sense to increase Naggr? To start with it's virtually -# impossible in 32-bit mode, because of limited register bank -# capacity. Otherwise improvement has to be weighed agiainst slower -# setup, as well as code size and complexity increase. As even -# optimistic estimate doesn't promise 30% performance improvement, -# there are currently no plans to increase Naggr. -# -# Special thanks to David Woodhouse <dwmw2@infradead.org> for -# providing access to a Westmere-based system on behalf of Intel -# Open Source Technology Centre. - -# January 2010 -# -# Tweaked to optimize transitions between integer and FP operations -# on same XMM register, PCLMULQDQ subroutine was measured to process -# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere. -# The minor regression on Westmere is outweighed by ~15% improvement -# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in -# similar manner resulted in almost 20% degradation on Sandy Bridge, -# where original 64-bit code processes one byte in 1.95 cycles. - -$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; -push(@INC,"${dir}","${dir}../../perlasm"); -require "x86asm.pl"; - -&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386"); - -$sse2=0; -for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } - -($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx"); -$inp = "edi"; -$Htbl = "esi"; - -$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse - # than unrolled, which has to be weighted against - # 2.5x x86-specific code size reduction. - -sub x86_loop { - my $off = shift; - my $rem = "eax"; - - &mov ($Zhh,&DWP(4,$Htbl,$Zll)); - &mov ($Zhl,&DWP(0,$Htbl,$Zll)); - &mov ($Zlh,&DWP(12,$Htbl,$Zll)); - &mov ($Zll,&DWP(8,$Htbl,$Zll)); - &xor ($rem,$rem); # avoid partial register stalls on PIII - - # shrd practically kills P4, 2.5x deterioration, but P4 has - # MMX code-path to execute. shrd runs tad faster [than twice - # the shifts, move's and or's] on pre-MMX Pentium (as well as - # PIII and Core2), *but* minimizes code size, spares register - # and thus allows to fold the loop... - if (!$unroll) { - my $cnt = $inp; - &mov ($cnt,15); - &jmp (&label("x86_loop")); - &set_label("x86_loop",16); - for($i=1;$i<=2;$i++) { - &mov (&LB($rem),&LB($Zll)); - &shrd ($Zll,$Zlh,4); - &and (&LB($rem),0xf); - &shrd ($Zlh,$Zhl,4); - &shrd ($Zhl,$Zhh,4); - &shr ($Zhh,4); - &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); - - &mov (&LB($rem),&BP($off,"esp",$cnt)); - if ($i&1) { - &and (&LB($rem),0xf0); - } else { - &shl (&LB($rem),4); - } - - &xor ($Zll,&DWP(8,$Htbl,$rem)); - &xor ($Zlh,&DWP(12,$Htbl,$rem)); - &xor ($Zhl,&DWP(0,$Htbl,$rem)); - &xor ($Zhh,&DWP(4,$Htbl,$rem)); - - if ($i&1) { - &dec ($cnt); - &js (&label("x86_break")); - } else { - &jmp (&label("x86_loop")); - } - } - &set_label("x86_break",16); - } else { - for($i=1;$i<32;$i++) { - &comment($i); - &mov (&LB($rem),&LB($Zll)); - &shrd ($Zll,$Zlh,4); - &and (&LB($rem),0xf); - &shrd ($Zlh,$Zhl,4); - &shrd ($Zhl,$Zhh,4); - &shr ($Zhh,4); - &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); - - if ($i&1) { - &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); - &and (&LB($rem),0xf0); - } else { - &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); - &shl (&LB($rem),4); - } - - &xor ($Zll,&DWP(8,$Htbl,$rem)); - &xor ($Zlh,&DWP(12,$Htbl,$rem)); - &xor ($Zhl,&DWP(0,$Htbl,$rem)); - &xor ($Zhh,&DWP(4,$Htbl,$rem)); - } - } - &bswap ($Zll); - &bswap ($Zlh); - &bswap ($Zhl); - if (!$x86only) { - &bswap ($Zhh); - } else { - &mov ("eax",$Zhh); - &bswap ("eax"); - &mov ($Zhh,"eax"); - } -} - -if ($unroll) { - &function_begin_B("_x86_gmult_4bit_inner"); - &x86_loop(4); - &ret (); - &function_end_B("_x86_gmult_4bit_inner"); -} - -sub deposit_rem_4bit { - my $bias = shift; - - &mov (&DWP($bias+0, "esp"),0x0000<<16); - &mov (&DWP($bias+4, "esp"),0x1C20<<16); - &mov (&DWP($bias+8, "esp"),0x3840<<16); - &mov (&DWP($bias+12,"esp"),0x2460<<16); - &mov (&DWP($bias+16,"esp"),0x7080<<16); - &mov (&DWP($bias+20,"esp"),0x6CA0<<16); - &mov (&DWP($bias+24,"esp"),0x48C0<<16); - &mov (&DWP($bias+28,"esp"),0x54E0<<16); - &mov (&DWP($bias+32,"esp"),0xE100<<16); - &mov (&DWP($bias+36,"esp"),0xFD20<<16); - &mov (&DWP($bias+40,"esp"),0xD940<<16); - &mov (&DWP($bias+44,"esp"),0xC560<<16); - &mov (&DWP($bias+48,"esp"),0x9180<<16); - &mov (&DWP($bias+52,"esp"),0x8DA0<<16); - &mov (&DWP($bias+56,"esp"),0xA9C0<<16); - &mov (&DWP($bias+60,"esp"),0xB5E0<<16); -} - -$suffix = $x86only ? "" : "_x86"; - -&function_begin("gcm_gmult_4bit".$suffix); - &stack_push(16+4+1); # +1 for stack alignment - &mov ($inp,&wparam(0)); # load Xi - &mov ($Htbl,&wparam(1)); # load Htable - - &mov ($Zhh,&DWP(0,$inp)); # load Xi[16] - &mov ($Zhl,&DWP(4,$inp)); - &mov ($Zlh,&DWP(8,$inp)); - &mov ($Zll,&DWP(12,$inp)); - - &deposit_rem_4bit(16); - - &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack - &mov (&DWP(4,"esp"),$Zhl); - &mov (&DWP(8,"esp"),$Zlh); - &mov (&DWP(12,"esp"),$Zll); - &shr ($Zll,20); - &and ($Zll,0xf0); - - if ($unroll) { - &call ("_x86_gmult_4bit_inner"); - } else { - &x86_loop(0); - &mov ($inp,&wparam(0)); - } - - &mov (&DWP(12,$inp),$Zll); - &mov (&DWP(8,$inp),$Zlh); - &mov (&DWP(4,$inp),$Zhl); - &mov (&DWP(0,$inp),$Zhh); - &stack_pop(16+4+1); -&function_end("gcm_gmult_4bit".$suffix); - -&function_begin("gcm_ghash_4bit".$suffix); - &stack_push(16+4+1); # +1 for 64-bit alignment - &mov ($Zll,&wparam(0)); # load Xi - &mov ($Htbl,&wparam(1)); # load Htable - &mov ($inp,&wparam(2)); # load in - &mov ("ecx",&wparam(3)); # load len - &add ("ecx",$inp); - &mov (&wparam(3),"ecx"); - - &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16] - &mov ($Zhl,&DWP(4,$Zll)); - &mov ($Zlh,&DWP(8,$Zll)); - &mov ($Zll,&DWP(12,$Zll)); - - &deposit_rem_4bit(16); - - &set_label("x86_outer_loop",16); - &xor ($Zll,&DWP(12,$inp)); # xor with input - &xor ($Zlh,&DWP(8,$inp)); - &xor ($Zhl,&DWP(4,$inp)); - &xor ($Zhh,&DWP(0,$inp)); - &mov (&DWP(12,"esp"),$Zll); # dump it on stack - &mov (&DWP(8,"esp"),$Zlh); - &mov (&DWP(4,"esp"),$Zhl); - &mov (&DWP(0,"esp"),$Zhh); - - &shr ($Zll,20); - &and ($Zll,0xf0); - - if ($unroll) { - &call ("_x86_gmult_4bit_inner"); - } else { - &x86_loop(0); - &mov ($inp,&wparam(2)); - } - &lea ($inp,&DWP(16,$inp)); - &cmp ($inp,&wparam(3)); - &mov (&wparam(2),$inp) if (!$unroll); - &jb (&label("x86_outer_loop")); - - &mov ($inp,&wparam(0)); # load Xi - &mov (&DWP(12,$inp),$Zll); - &mov (&DWP(8,$inp),$Zlh); - &mov (&DWP(4,$inp),$Zhl); - &mov (&DWP(0,$inp),$Zhh); - &stack_pop(16+4+1); -&function_end("gcm_ghash_4bit".$suffix); - -if (!$x86only) {{{ - -&static_label("rem_4bit"); - -if (!$sse2) {{ # pure-MMX "May" version... - -$S=12; # shift factor for rem_4bit - -&function_begin_B("_mmx_gmult_4bit_inner"); -# MMX version performs 3.5 times better on P4 (see comment in non-MMX -# routine for further details), 100% better on Opteron, ~70% better -# on Core2 and PIII... In other words effort is considered to be well -# spent... Since initial release the loop was unrolled in order to -# "liberate" register previously used as loop counter. Instead it's -# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'. -# The path involves move of Z.lo from MMX to integer register, -# effective address calculation and finally merge of value to Z.hi. -# Reference to rem_4bit is scheduled so late that I had to >>4 -# rem_4bit elements. This resulted in 20-45% procent improvement -# on contemporary ยต-archs. -{ - my $cnt; - my $rem_4bit = "eax"; - my @rem = ($Zhh,$Zll); - my $nhi = $Zhl; - my $nlo = $Zlh; - - my ($Zlo,$Zhi) = ("mm0","mm1"); - my $tmp = "mm2"; - - &xor ($nlo,$nlo); # avoid partial register stalls on PIII - &mov ($nhi,$Zll); - &mov (&LB($nlo),&LB($nhi)); - &shl (&LB($nlo),4); - &and ($nhi,0xf0); - &movq ($Zlo,&QWP(8,$Htbl,$nlo)); - &movq ($Zhi,&QWP(0,$Htbl,$nlo)); - &movd ($rem[0],$Zlo); - - for ($cnt=28;$cnt>=-2;$cnt--) { - my $odd = $cnt&1; - my $nix = $odd ? $nlo : $nhi; - - &shl (&LB($nlo),4) if ($odd); - &psrlq ($Zlo,4); - &movq ($tmp,$Zhi); - &psrlq ($Zhi,4); - &pxor ($Zlo,&QWP(8,$Htbl,$nix)); - &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0); - &psllq ($tmp,60); - &and ($nhi,0xf0) if ($odd); - &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28); - &and ($rem[0],0xf); - &pxor ($Zhi,&QWP(0,$Htbl,$nix)); - &mov ($nhi,$nlo) if (!$odd && $cnt>=0); - &movd ($rem[1],$Zlo); - &pxor ($Zlo,$tmp); - - push (@rem,shift(@rem)); # "rotate" registers - } - - &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem] - - &psrlq ($Zlo,32); # lower part of Zlo is already there - &movd ($Zhl,$Zhi); - &psrlq ($Zhi,32); - &movd ($Zlh,$Zlo); - &movd ($Zhh,$Zhi); - &shl ($inp,4); # compensate for rem_4bit[i] being >>4 - - &bswap ($Zll); - &bswap ($Zhl); - &bswap ($Zlh); - &xor ($Zhh,$inp); - &bswap ($Zhh); - - &ret (); -} -&function_end_B("_mmx_gmult_4bit_inner"); - -&function_begin("gcm_gmult_4bit_mmx"); - &mov ($inp,&wparam(0)); # load Xi - &mov ($Htbl,&wparam(1)); # load Htable - - &call (&label("pic_point")); - &set_label("pic_point"); - &blindpop("eax"); - &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); - - &movz ($Zll,&BP(15,$inp)); - - &call ("_mmx_gmult_4bit_inner"); - - &mov ($inp,&wparam(0)); # load Xi - &emms (); - &mov (&DWP(12,$inp),$Zll); - &mov (&DWP(4,$inp),$Zhl); - &mov (&DWP(8,$inp),$Zlh); - &mov (&DWP(0,$inp),$Zhh); -&function_end("gcm_gmult_4bit_mmx"); - -# Streamed version performs 20% better on P4, 7% on Opteron, -# 10% on Core2 and PIII... -&function_begin("gcm_ghash_4bit_mmx"); - &mov ($Zhh,&wparam(0)); # load Xi - &mov ($Htbl,&wparam(1)); # load Htable - &mov ($inp,&wparam(2)); # load in - &mov ($Zlh,&wparam(3)); # load len - - &call (&label("pic_point")); - &set_label("pic_point"); - &blindpop("eax"); - &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); - - &add ($Zlh,$inp); - &mov (&wparam(3),$Zlh); # len to point at the end of input - &stack_push(4+1); # +1 for stack alignment - - &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16] - &mov ($Zhl,&DWP(4,$Zhh)); - &mov ($Zlh,&DWP(8,$Zhh)); - &mov ($Zhh,&DWP(0,$Zhh)); - &jmp (&label("mmx_outer_loop")); - - &set_label("mmx_outer_loop",16); - &xor ($Zll,&DWP(12,$inp)); - &xor ($Zhl,&DWP(4,$inp)); - &xor ($Zlh,&DWP(8,$inp)); - &xor ($Zhh,&DWP(0,$inp)); - &mov (&wparam(2),$inp); - &mov (&DWP(12,"esp"),$Zll); - &mov (&DWP(4,"esp"),$Zhl); - &mov (&DWP(8,"esp"),$Zlh); - &mov (&DWP(0,"esp"),$Zhh); - - &mov ($inp,"esp"); - &shr ($Zll,24); - - &call ("_mmx_gmult_4bit_inner"); - - &mov ($inp,&wparam(2)); - &lea ($inp,&DWP(16,$inp)); - &cmp ($inp,&wparam(3)); - &jb (&label("mmx_outer_loop")); - - &mov ($inp,&wparam(0)); # load Xi - &emms (); - &mov (&DWP(12,$inp),$Zll); - &mov (&DWP(4,$inp),$Zhl); - &mov (&DWP(8,$inp),$Zlh); - &mov (&DWP(0,$inp),$Zhh); - - &stack_pop(4+1); -&function_end("gcm_ghash_4bit_mmx"); - -}} else {{ # "June" MMX version... - # ... has slower "April" gcm_gmult_4bit_mmx with folded - # loop. This is done to conserve code size... -$S=16; # shift factor for rem_4bit - -sub mmx_loop() { -# MMX version performs 2.8 times better on P4 (see comment in non-MMX -# routine for further details), 40% better on Opteron and Core2, 50% -# better on PIII... In other words effort is considered to be well -# spent... - my $inp = shift; - my $rem_4bit = shift; - my $cnt = $Zhh; - my $nhi = $Zhl; - my $nlo = $Zlh; - my $rem = $Zll; - - my ($Zlo,$Zhi) = ("mm0","mm1"); - my $tmp = "mm2"; - - &xor ($nlo,$nlo); # avoid partial register stalls on PIII - &mov ($nhi,$Zll); - &mov (&LB($nlo),&LB($nhi)); - &mov ($cnt,14); - &shl (&LB($nlo),4); - &and ($nhi,0xf0); - &movq ($Zlo,&QWP(8,$Htbl,$nlo)); - &movq ($Zhi,&QWP(0,$Htbl,$nlo)); - &movd ($rem,$Zlo); - &jmp (&label("mmx_loop")); - - &set_label("mmx_loop",16); - &psrlq ($Zlo,4); - &and ($rem,0xf); - &movq ($tmp,$Zhi); - &psrlq ($Zhi,4); - &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); - &mov (&LB($nlo),&BP(0,$inp,$cnt)); - &psllq ($tmp,60); - &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); - &dec ($cnt); - &movd ($rem,$Zlo); - &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); - &mov ($nhi,$nlo); - &pxor ($Zlo,$tmp); - &js (&label("mmx_break")); - - &shl (&LB($nlo),4); - &and ($rem,0xf); - &psrlq ($Zlo,4); - &and ($nhi,0xf0); - &movq ($tmp,$Zhi); - &psrlq ($Zhi,4); - &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); - &psllq ($tmp,60); - &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); - &movd ($rem,$Zlo); - &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); - &pxor ($Zlo,$tmp); - &jmp (&label("mmx_loop")); - - &set_label("mmx_break",16); - &shl (&LB($nlo),4); - &and ($rem,0xf); - &psrlq ($Zlo,4); - &and ($nhi,0xf0); - &movq ($tmp,$Zhi); - &psrlq ($Zhi,4); - &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); - &psllq ($tmp,60); - &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); - &movd ($rem,$Zlo); - &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); - &pxor ($Zlo,$tmp); - - &psrlq ($Zlo,4); - &and ($rem,0xf); - &movq ($tmp,$Zhi); - &psrlq ($Zhi,4); - &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); - &psllq ($tmp,60); - &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); - &movd ($rem,$Zlo); - &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); - &pxor ($Zlo,$tmp); - - &psrlq ($Zlo,32); # lower part of Zlo is already there - &movd ($Zhl,$Zhi); - &psrlq ($Zhi,32); - &movd ($Zlh,$Zlo); - &movd ($Zhh,$Zhi); - - &bswap ($Zll); - &bswap ($Zhl); - &bswap ($Zlh); - &bswap ($Zhh); -} - -&function_begin("gcm_gmult_4bit_mmx"); - &mov ($inp,&wparam(0)); # load Xi - &mov ($Htbl,&wparam(1)); # load Htable - - &call (&label("pic_point")); - &set_label("pic_point"); - &blindpop("eax"); - &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); - - &movz ($Zll,&BP(15,$inp)); - - &mmx_loop($inp,"eax"); - - &emms (); - &mov (&DWP(12,$inp),$Zll); - &mov (&DWP(4,$inp),$Zhl); - &mov (&DWP(8,$inp),$Zlh); - &mov (&DWP(0,$inp),$Zhh); -&function_end("gcm_gmult_4bit_mmx"); - -###################################################################### -# Below subroutine is "528B" variant of "4-bit" GCM GHASH function -# (see gcm128.c for details). It provides further 20-40% performance -# improvement over above mentioned "May" version. - -&static_label("rem_8bit"); - -&function_begin("gcm_ghash_4bit_mmx"); -{ my ($Zlo,$Zhi) = ("mm7","mm6"); - my $rem_8bit = "esi"; - my $Htbl = "ebx"; - - # parameter block - &mov ("eax",&wparam(0)); # Xi - &mov ("ebx",&wparam(1)); # Htable - &mov ("ecx",&wparam(2)); # inp - &mov ("edx",&wparam(3)); # len - &mov ("ebp","esp"); # original %esp - &call (&label("pic_point")); - &set_label ("pic_point"); - &blindpop ($rem_8bit); - &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit)); - - &sub ("esp",512+16+16); # allocate stack frame... - &and ("esp",-64); # ...and align it - &sub ("esp",16); # place for (u8)(H[]<<4) - - &add ("edx","ecx"); # pointer to the end of input - &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi - &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len - &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp - - { my @lo = ("mm0","mm1","mm2"); - my @hi = ("mm3","mm4","mm5"); - my @tmp = ("mm6","mm7"); - my ($off1,$off2,$i) = (0,0,); - - &add ($Htbl,128); # optimize for size - &lea ("edi",&DWP(16+128,"esp")); - &lea ("ebp",&DWP(16+256+128,"esp")); - - # decompose Htable (low and high parts are kept separately), - # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack... - for ($i=0;$i<18;$i++) { - - &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16); - &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16); - &psllq ($tmp[1],60) if ($i>1); - &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16); - &por ($lo[2],$tmp[1]) if ($i>1); - &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17); - &psrlq ($lo[1],4) if ($i>0 && $i<17); - &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17); - &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17); - &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1); - &psrlq ($hi[1],4) if ($i>0 && $i<17); - &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1); - &shl ("edx",4) if ($i<16); - &mov (&BP($i,"esp"),&LB("edx")) if ($i<16); - - unshift (@lo,pop(@lo)); # "rotate" registers - unshift (@hi,pop(@hi)); - unshift (@tmp,pop(@tmp)); - $off1 += 8 if ($i>0); - $off2 += 8 if ($i>1); - } - } - - &movq ($Zhi,&QWP(0,"eax")); - &mov ("ebx",&DWP(8,"eax")); - &mov ("edx",&DWP(12,"eax")); # load Xi - -&set_label("outer",16); - { my $nlo = "eax"; - my $dat = "edx"; - my @nhi = ("edi","ebp"); - my @rem = ("ebx","ecx"); - my @red = ("mm0","mm1","mm2"); - my $tmp = "mm3"; - - &xor ($dat,&DWP(12,"ecx")); # merge input data - &xor ("ebx",&DWP(8,"ecx")); - &pxor ($Zhi,&QWP(0,"ecx")); - &lea ("ecx",&DWP(16,"ecx")); # inp+=16 - #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi - &mov (&DWP(528+8,"esp"),"ebx"); - &movq (&QWP(528+0,"esp"),$Zhi); - &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp - - &xor ($nlo,$nlo); - &rol ($dat,8); - &mov (&LB($nlo),&LB($dat)); - &mov ($nhi[1],$nlo); - &and (&LB($nlo),0x0f); - &shr ($nhi[1],4); - &pxor ($red[0],$red[0]); - &rol ($dat,8); # next byte - &pxor ($red[1],$red[1]); - &pxor ($red[2],$red[2]); - - # Just like in "May" verson modulo-schedule for critical path in - # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor' - # is scheduled so late that rem_8bit[] has to be shifted *right* - # by 16, which is why last argument to pinsrw is 2, which - # corresponds to <<32=<<48>>16... - for ($j=11,$i=0;$i<15;$i++) { - - if ($i>0) { - &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] - &rol ($dat,8); # next byte - &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); - - &pxor ($Zlo,$tmp); - &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); - &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) - } else { - &movq ($Zlo,&QWP(16,"esp",$nlo,8)); - &movq ($Zhi,&QWP(16+128,"esp",$nlo,8)); - } - - &mov (&LB($nlo),&LB($dat)); - &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0); - - &movd ($rem[0],$Zlo); - &movz ($rem[1],&LB($rem[1])) if ($i>0); - &psrlq ($Zlo,8); # Z>>=8 - - &movq ($tmp,$Zhi); - &mov ($nhi[0],$nlo); - &psrlq ($Zhi,8); - - &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4 - &and (&LB($nlo),0x0f); - &psllq ($tmp,56); - - &pxor ($Zhi,$red[1]) if ($i>1); - &shr ($nhi[0],4); - &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0); - - unshift (@red,pop(@red)); # "rotate" registers - unshift (@rem,pop(@rem)); - unshift (@nhi,pop(@nhi)); - } - - &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] - &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); - &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) - - &pxor ($Zlo,$tmp); - &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); - &movz ($rem[1],&LB($rem[1])); - - &pxor ($red[2],$red[2]); # clear 2nd word - &psllq ($red[1],4); - - &movd ($rem[0],$Zlo); - &psrlq ($Zlo,4); # Z>>=4 - - &movq ($tmp,$Zhi); - &psrlq ($Zhi,4); - &shl ($rem[0],4); # rem<<4 - - &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi] - &psllq ($tmp,60); - &movz ($rem[0],&LB($rem[0])); - - &pxor ($Zlo,$tmp); - &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8)); - - &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2); - &pxor ($Zhi,$red[1]); - - &movd ($dat,$Zlo); - &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48 - - &psllq ($red[0],12); # correct by <<16>>4 - &pxor ($Zhi,$red[0]); - &psrlq ($Zlo,32); - &pxor ($Zhi,$red[2]); - - &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp - &movd ("ebx",$Zlo); - &movq ($tmp,$Zhi); # 01234567 - &psllw ($Zhi,8); # 1.3.5.7. - &psrlw ($tmp,8); # .0.2.4.6 - &por ($Zhi,$tmp); # 10325476 - &bswap ($dat); - &pshufw ($Zhi,$Zhi,0b00011011); # 76543210 - &bswap ("ebx"); - - &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done? - &jne (&label("outer")); - } - - &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi - &mov (&DWP(12,"eax"),"edx"); - &mov (&DWP(8,"eax"),"ebx"); - &movq (&QWP(0,"eax"),$Zhi); - - &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp - &emms (); -} -&function_end("gcm_ghash_4bit_mmx"); -}} - -if ($sse2) {{ -###################################################################### -# PCLMULQDQ version. - -$Xip="eax"; -$Htbl="edx"; -$const="ecx"; -$inp="esi"; -$len="ebx"; - -($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2"; -($T1,$T2,$T3)=("xmm3","xmm4","xmm5"); -($Xn,$Xhn)=("xmm6","xmm7"); - -&static_label("bswap"); - -sub clmul64x64_T2 { # minimal "register" pressure -my ($Xhi,$Xi,$Hkey)=@_; - - &movdqa ($Xhi,$Xi); # - &pshufd ($T1,$Xi,0b01001110); - &pshufd ($T2,$Hkey,0b01001110); - &pxor ($T1,$Xi); # - &pxor ($T2,$Hkey); - - &pclmulqdq ($Xi,$Hkey,0x00); ####### - &pclmulqdq ($Xhi,$Hkey,0x11); ####### - &pclmulqdq ($T1,$T2,0x00); ####### - &xorps ($T1,$Xi); # - &xorps ($T1,$Xhi); # - - &movdqa ($T2,$T1); # - &psrldq ($T1,8); - &pslldq ($T2,8); # - &pxor ($Xhi,$T1); - &pxor ($Xi,$T2); # -} - -sub clmul64x64_T3 { -# Even though this subroutine offers visually better ILP, it -# was empirically found to be a tad slower than above version. -# At least in gcm_ghash_clmul context. But it's just as well, -# because loop modulo-scheduling is possible only thanks to -# minimized "register" pressure... -my ($Xhi,$Xi,$Hkey)=@_; - - &movdqa ($T1,$Xi); # - &movdqa ($Xhi,$Xi); - &pclmulqdq ($Xi,$Hkey,0x00); ####### - &pclmulqdq ($Xhi,$Hkey,0x11); ####### - &pshufd ($T2,$T1,0b01001110); # - &pshufd ($T3,$Hkey,0b01001110); - &pxor ($T2,$T1); # - &pxor ($T3,$Hkey); - &pclmulqdq ($T2,$T3,0x00); ####### - &pxor ($T2,$Xi); # - &pxor ($T2,$Xhi); # - - &movdqa ($T3,$T2); # - &psrldq ($T2,8); - &pslldq ($T3,8); # - &pxor ($Xhi,$T2); - &pxor ($Xi,$T3); # -} - -if (1) { # Algorithm 9 with <<1 twist. - # Reduction is shorter and uses only two - # temporary registers, which makes it better - # candidate for interleaving with 64x64 - # multiplication. Pre-modulo-scheduled loop - # was found to be ~20% faster than Algorithm 5 - # below. Algorithm 9 was therefore chosen for - # further optimization... - -sub reduction_alg9 { # 17/13 times faster than Intel version -my ($Xhi,$Xi) = @_; - - # 1st phase - &movdqa ($T1,$Xi); # - &psllq ($Xi,1); - &pxor ($Xi,$T1); # - &psllq ($Xi,5); # - &pxor ($Xi,$T1); # - &psllq ($Xi,57); # - &movdqa ($T2,$Xi); # - &pslldq ($Xi,8); - &psrldq ($T2,8); # - &pxor ($Xi,$T1); - &pxor ($Xhi,$T2); # - - # 2nd phase - &movdqa ($T2,$Xi); - &psrlq ($Xi,5); - &pxor ($Xi,$T2); # - &psrlq ($Xi,1); # - &pxor ($Xi,$T2); # - &pxor ($T2,$Xhi); - &psrlq ($Xi,1); # - &pxor ($Xi,$T2); # -} - -&function_begin_B("gcm_init_clmul"); - &mov ($Htbl,&wparam(0)); - &mov ($Xip,&wparam(1)); - - &call (&label("pic")); -&set_label("pic"); - &blindpop ($const); - &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); - - &movdqu ($Hkey,&QWP(0,$Xip)); - &pshufd ($Hkey,$Hkey,0b01001110);# dword swap - - # <<1 twist - &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword - &movdqa ($T1,$Hkey); - &psllq ($Hkey,1); - &pxor ($T3,$T3); # - &psrlq ($T1,63); - &pcmpgtd ($T3,$T2); # broadcast carry bit - &pslldq ($T1,8); - &por ($Hkey,$T1); # H<<=1 - - # magic reduction - &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial - &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial - - # calculate H^2 - &movdqa ($Xi,$Hkey); - &clmul64x64_T2 ($Xhi,$Xi,$Hkey); - &reduction_alg9 ($Xhi,$Xi); - - &movdqu (&QWP(0,$Htbl),$Hkey); # save H - &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 - - &ret (); -&function_end_B("gcm_init_clmul"); - -&function_begin_B("gcm_gmult_clmul"); - &mov ($Xip,&wparam(0)); - &mov ($Htbl,&wparam(1)); - - &call (&label("pic")); -&set_label("pic"); - &blindpop ($const); - &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); - - &movdqu ($Xi,&QWP(0,$Xip)); - &movdqa ($T3,&QWP(0,$const)); - &movups ($Hkey,&QWP(0,$Htbl)); - &pshufb ($Xi,$T3); - - &clmul64x64_T2 ($Xhi,$Xi,$Hkey); - &reduction_alg9 ($Xhi,$Xi); - - &pshufb ($Xi,$T3); - &movdqu (&QWP(0,$Xip),$Xi); - - &ret (); -&function_end_B("gcm_gmult_clmul"); - -&function_begin("gcm_ghash_clmul"); - &mov ($Xip,&wparam(0)); - &mov ($Htbl,&wparam(1)); - &mov ($inp,&wparam(2)); - &mov ($len,&wparam(3)); - - &call (&label("pic")); -&set_label("pic"); - &blindpop ($const); - &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); - - &movdqu ($Xi,&QWP(0,$Xip)); - &movdqa ($T3,&QWP(0,$const)); - &movdqu ($Hkey,&QWP(0,$Htbl)); - &pshufb ($Xi,$T3); - - &sub ($len,0x10); - &jz (&label("odd_tail")); - - ####### - # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = - # [(H*Ii+1) + (H*Xi+1)] mod P = - # [(H*Ii+1) + H^2*(Ii+Xi)] mod P - # - &movdqu ($T1,&QWP(0,$inp)); # Ii - &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 - &pshufb ($T1,$T3); - &pshufb ($Xn,$T3); - &pxor ($Xi,$T1); # Ii+Xi - - &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 - &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 - - &lea ($inp,&DWP(32,$inp)); # i+=2 - &sub ($len,0x20); - &jbe (&label("even_tail")); - -&set_label("mod_loop"); - &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) - &movdqu ($T1,&QWP(0,$inp)); # Ii - &movups ($Hkey,&QWP(0,$Htbl)); # load H - - &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) - &pxor ($Xhi,$Xhn); - - &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 - &pshufb ($T1,$T3); - &pshufb ($Xn,$T3); - - &movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1 - &movdqa ($Xhn,$Xn); - &pxor ($Xhi,$T1); # "Ii+Xi", consume early - - &movdqa ($T1,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase - &psllq ($Xi,1); - &pxor ($Xi,$T1); # - &psllq ($Xi,5); # - &pxor ($Xi,$T1); # - &pclmulqdq ($Xn,$Hkey,0x00); ####### - &psllq ($Xi,57); # - &movdqa ($T2,$Xi); # - &pslldq ($Xi,8); - &psrldq ($T2,8); # - &pxor ($Xi,$T1); - &pshufd ($T1,$T3,0b01001110); - &pxor ($Xhi,$T2); # - &pxor ($T1,$T3); - &pshufd ($T3,$Hkey,0b01001110); - &pxor ($T3,$Hkey); # - - &pclmulqdq ($Xhn,$Hkey,0x11); ####### - &movdqa ($T2,$Xi); # 2nd phase - &psrlq ($Xi,5); - &pxor ($Xi,$T2); # - &psrlq ($Xi,1); # - &pxor ($Xi,$T2); # - &pxor ($T2,$Xhi); - &psrlq ($Xi,1); # - &pxor ($Xi,$T2); # - - &pclmulqdq ($T1,$T3,0x00); ####### - &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 - &xorps ($T1,$Xn); # - &xorps ($T1,$Xhn); # - - &movdqa ($T3,$T1); # - &psrldq ($T1,8); - &pslldq ($T3,8); # - &pxor ($Xhn,$T1); - &pxor ($Xn,$T3); # - &movdqa ($T3,&QWP(0,$const)); - - &lea ($inp,&DWP(32,$inp)); - &sub ($len,0x20); - &ja (&label("mod_loop")); - -&set_label("even_tail"); - &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) - - &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) - &pxor ($Xhi,$Xhn); - - &reduction_alg9 ($Xhi,$Xi); - - &test ($len,$len); - &jnz (&label("done")); - - &movups ($Hkey,&QWP(0,$Htbl)); # load H -&set_label("odd_tail"); - &movdqu ($T1,&QWP(0,$inp)); # Ii - &pshufb ($T1,$T3); - &pxor ($Xi,$T1); # Ii+Xi - - &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) - &reduction_alg9 ($Xhi,$Xi); - -&set_label("done"); - &pshufb ($Xi,$T3); - &movdqu (&QWP(0,$Xip),$Xi); -&function_end("gcm_ghash_clmul"); - -} else { # Algorith 5. Kept for reference purposes. - -sub reduction_alg5 { # 19/16 times faster than Intel version -my ($Xhi,$Xi)=@_; - - # <<1 - &movdqa ($T1,$Xi); # - &movdqa ($T2,$Xhi); - &pslld ($Xi,1); - &pslld ($Xhi,1); # - &psrld ($T1,31); - &psrld ($T2,31); # - &movdqa ($T3,$T1); - &pslldq ($T1,4); - &psrldq ($T3,12); # - &pslldq ($T2,4); - &por ($Xhi,$T3); # - &por ($Xi,$T1); - &por ($Xhi,$T2); # - - # 1st phase - &movdqa ($T1,$Xi); - &movdqa ($T2,$Xi); - &movdqa ($T3,$Xi); # - &pslld ($T1,31); - &pslld ($T2,30); - &pslld ($Xi,25); # - &pxor ($T1,$T2); - &pxor ($T1,$Xi); # - &movdqa ($T2,$T1); # - &pslldq ($T1,12); - &psrldq ($T2,4); # - &pxor ($T3,$T1); - - # 2nd phase - &pxor ($Xhi,$T3); # - &movdqa ($Xi,$T3); - &movdqa ($T1,$T3); - &psrld ($Xi,1); # - &psrld ($T1,2); - &psrld ($T3,7); # - &pxor ($Xi,$T1); - &pxor ($Xhi,$T2); - &pxor ($Xi,$T3); # - &pxor ($Xi,$Xhi); # -} - -&function_begin_B("gcm_init_clmul"); - &mov ($Htbl,&wparam(0)); - &mov ($Xip,&wparam(1)); - - &call (&label("pic")); -&set_label("pic"); - &blindpop ($const); - &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); - - &movdqu ($Hkey,&QWP(0,$Xip)); - &pshufd ($Hkey,$Hkey,0b01001110);# dword swap - - # calculate H^2 - &movdqa ($Xi,$Hkey); - &clmul64x64_T3 ($Xhi,$Xi,$Hkey); - &reduction_alg5 ($Xhi,$Xi); - - &movdqu (&QWP(0,$Htbl),$Hkey); # save H - &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 - - &ret (); -&function_end_B("gcm_init_clmul"); - -&function_begin_B("gcm_gmult_clmul"); - &mov ($Xip,&wparam(0)); - &mov ($Htbl,&wparam(1)); - - &call (&label("pic")); -&set_label("pic"); - &blindpop ($const); - &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); - - &movdqu ($Xi,&QWP(0,$Xip)); - &movdqa ($Xn,&QWP(0,$const)); - &movdqu ($Hkey,&QWP(0,$Htbl)); - &pshufb ($Xi,$Xn); - - &clmul64x64_T3 ($Xhi,$Xi,$Hkey); - &reduction_alg5 ($Xhi,$Xi); - - &pshufb ($Xi,$Xn); - &movdqu (&QWP(0,$Xip),$Xi); - - &ret (); -&function_end_B("gcm_gmult_clmul"); - -&function_begin("gcm_ghash_clmul"); - &mov ($Xip,&wparam(0)); - &mov ($Htbl,&wparam(1)); - &mov ($inp,&wparam(2)); - &mov ($len,&wparam(3)); - - &call (&label("pic")); -&set_label("pic"); - &blindpop ($const); - &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); - - &movdqu ($Xi,&QWP(0,$Xip)); - &movdqa ($T3,&QWP(0,$const)); - &movdqu ($Hkey,&QWP(0,$Htbl)); - &pshufb ($Xi,$T3); - - &sub ($len,0x10); - &jz (&label("odd_tail")); - - ####### - # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = - # [(H*Ii+1) + (H*Xi+1)] mod P = - # [(H*Ii+1) + H^2*(Ii+Xi)] mod P - # - &movdqu ($T1,&QWP(0,$inp)); # Ii - &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 - &pshufb ($T1,$T3); - &pshufb ($Xn,$T3); - &pxor ($Xi,$T1); # Ii+Xi - - &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 - &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 - - &sub ($len,0x20); - &lea ($inp,&DWP(32,$inp)); # i+=2 - &jbe (&label("even_tail")); - -&set_label("mod_loop"); - &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) - &movdqu ($Hkey,&QWP(0,$Htbl)); # load H - - &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) - &pxor ($Xhi,$Xhn); - - &reduction_alg5 ($Xhi,$Xi); - - ####### - &movdqa ($T3,&QWP(0,$const)); - &movdqu ($T1,&QWP(0,$inp)); # Ii - &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 - &pshufb ($T1,$T3); - &pshufb ($Xn,$T3); - &pxor ($Xi,$T1); # Ii+Xi - - &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 - &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 - - &sub ($len,0x20); - &lea ($inp,&DWP(32,$inp)); - &ja (&label("mod_loop")); - -&set_label("even_tail"); - &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) - - &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) - &pxor ($Xhi,$Xhn); - - &reduction_alg5 ($Xhi,$Xi); - - &movdqa ($T3,&QWP(0,$const)); - &test ($len,$len); - &jnz (&label("done")); - - &movdqu ($Hkey,&QWP(0,$Htbl)); # load H -&set_label("odd_tail"); - &movdqu ($T1,&QWP(0,$inp)); # Ii - &pshufb ($T1,$T3); - &pxor ($Xi,$T1); # Ii+Xi - - &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) - &reduction_alg5 ($Xhi,$Xi); - - &movdqa ($T3,&QWP(0,$const)); -&set_label("done"); - &pshufb ($Xi,$T3); - &movdqu (&QWP(0,$Xip),$Xi); -&function_end("gcm_ghash_clmul"); - -} - -&set_label("bswap",64); - &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0); - &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial -}} # $sse2 - -&set_label("rem_4bit",64); - &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S); - &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S); - &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S); - &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S); -&set_label("rem_8bit",64); - &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E); - &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E); - &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E); - &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E); - &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E); - &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E); - &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E); - &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E); - &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE); - &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE); - &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE); - &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE); - &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E); - &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E); - &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE); - &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE); - &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E); - &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E); - &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E); - &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E); - &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E); - &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E); - &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E); - &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E); - &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE); - &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE); - &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE); - &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE); - &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E); - &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E); - &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE); - &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE); -}}} # !$x86only - -&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>"); -&asm_finish(); - -# A question was risen about choice of vanilla MMX. Or rather why wasn't -# SSE2 chosen instead? In addition to the fact that MMX runs on legacy -# CPUs such as PIII, "4-bit" MMX version was observed to provide better -# performance than *corresponding* SSE2 one even on contemporary CPUs. -# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2 -# implementation featuring full range of lookup-table sizes, but with -# per-invocation lookup table setup. Latter means that table size is -# chosen depending on how much data is to be hashed in every given call, -# more data - larger table. Best reported result for Core2 is ~4 cycles -# per processed byte out of 64KB block. This number accounts even for -# 64KB table setup overhead. As discussed in gcm128.c we choose to be -# more conservative in respect to lookup table sizes, but how do the -# results compare? Minimalistic "256B" MMX version delivers ~11 cycles -# on same platform. As also discussed in gcm128.c, next in line "8-bit -# Shoup's" or "4KB" method should deliver twice the performance of -# "256B" one, in other words not worse than ~6 cycles per byte. It -# should be also be noted that in SSE2 case improvement can be "super- -# linear," i.e. more than twice, mostly because >>8 maps to single -# instruction on SSE2 register. This is unlike "4-bit" case when >>4 -# maps to same amount of instructions in both MMX and SSE2 cases. -# Bottom line is that switch to SSE2 is considered to be justifiable -# only in case we choose to implement "8-bit" method... |