diff options
Diffstat (limited to 'app/openssl/crypto/modes/asm/ghash-armv4.pl')
-rw-r--r-- | app/openssl/crypto/modes/asm/ghash-armv4.pl | 492 |
1 files changed, 0 insertions, 492 deletions
diff --git a/app/openssl/crypto/modes/asm/ghash-armv4.pl b/app/openssl/crypto/modes/asm/ghash-armv4.pl deleted file mode 100644 index b79ecbcc..00000000 --- a/app/openssl/crypto/modes/asm/ghash-armv4.pl +++ /dev/null @@ -1,492 +0,0 @@ -#!/usr/bin/env perl -# -# ==================================================================== -# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL -# project. The module is, however, dual licensed under OpenSSL and -# CRYPTOGAMS licenses depending on where you obtain it. For further -# details see http://www.openssl.org/~appro/cryptogams/. -# ==================================================================== -# -# April 2010 -# -# The module implements "4-bit" GCM GHASH function and underlying -# single multiplication operation in GF(2^128). "4-bit" means that it -# uses 256 bytes per-key table [+32 bytes shared table]. There is no -# experimental performance data available yet. The only approximation -# that can be made at this point is based on code size. Inner loop is -# 32 instructions long and on single-issue core should execute in <40 -# cycles. Having verified that gcc 3.4 didn't unroll corresponding -# loop, this assembler loop body was found to be ~3x smaller than -# compiler-generated one... -# -# July 2010 -# -# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on -# Cortex A8 core and ~25 cycles per processed byte (which was observed -# to be ~3 times faster than gcc-generated code:-) -# -# February 2011 -# -# Profiler-assisted and platform-specific optimization resulted in 7% -# improvement on Cortex A8 core and ~23.5 cycles per byte. -# -# March 2011 -# -# Add NEON implementation featuring polynomial multiplication, i.e. no -# lookup tables involved. On Cortex A8 it was measured to process one -# byte in 15 cycles or 55% faster than integer-only code. -# -# April 2014 -# -# Switch to multiplication algorithm suggested in paper referred -# below and combine it with reduction algorithm from x86 module. -# Performance improvement over previous version varies from 65% on -# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8 -# processes one byte in 8.45 cycles, A9 - in 10.2, Snapdragon S4 - -# in 9.33. -# -# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software -# Polynomial Multiplication on ARM Processors using the NEON Engine. -# -# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf - -# ==================================================================== -# Note about "528B" variant. In ARM case it makes lesser sense to -# implement it for following reasons: -# -# - performance improvement won't be anywhere near 50%, because 128- -# bit shift operation is neatly fused with 128-bit xor here, and -# "538B" variant would eliminate only 4-5 instructions out of 32 -# in the inner loop (meaning that estimated improvement is ~15%); -# - ARM-based systems are often embedded ones and extra memory -# consumption might be unappreciated (for so little improvement); -# -# Byte order [in]dependence. ========================================= -# -# Caller is expected to maintain specific *dword* order in Htable, -# namely with *least* significant dword of 128-bit value at *lower* -# address. This differs completely from C code and has everything to -# do with ldm instruction and order in which dwords are "consumed" by -# algorithm. *Byte* order within these dwords in turn is whatever -# *native* byte order on current platform. See gcm128.c for working -# example... - -while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} -open STDOUT,">$output"; - -$Xi="r0"; # argument block -$Htbl="r1"; -$inp="r2"; -$len="r3"; - -$Zll="r4"; # variables -$Zlh="r5"; -$Zhl="r6"; -$Zhh="r7"; -$Tll="r8"; -$Tlh="r9"; -$Thl="r10"; -$Thh="r11"; -$nlo="r12"; -################# r13 is stack pointer -$nhi="r14"; -################# r15 is program counter - -$rem_4bit=$inp; # used in gcm_gmult_4bit -$cnt=$len; - -sub Zsmash() { - my $i=12; - my @args=@_; - for ($Zll,$Zlh,$Zhl,$Zhh) { - $code.=<<___; -#if __ARM_ARCH__>=7 && defined(__ARMEL__) - rev $_,$_ - str $_,[$Xi,#$i] -#elif defined(__ARMEB__) - str $_,[$Xi,#$i] -#else - mov $Tlh,$_,lsr#8 - strb $_,[$Xi,#$i+3] - mov $Thl,$_,lsr#16 - strb $Tlh,[$Xi,#$i+2] - mov $Thh,$_,lsr#24 - strb $Thl,[$Xi,#$i+1] - strb $Thh,[$Xi,#$i] -#endif -___ - $code.="\t".shift(@args)."\n"; - $i-=4; - } -} - -$code=<<___; -#include "arm_arch.h" - -.text -.code 32 - -.type rem_4bit,%object -.align 5 -rem_4bit: -.short 0x0000,0x1C20,0x3840,0x2460 -.short 0x7080,0x6CA0,0x48C0,0x54E0 -.short 0xE100,0xFD20,0xD940,0xC560 -.short 0x9180,0x8DA0,0xA9C0,0xB5E0 -.size rem_4bit,.-rem_4bit - -.type rem_4bit_get,%function -rem_4bit_get: - sub $rem_4bit,pc,#8 - sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit - b .Lrem_4bit_got - nop -.size rem_4bit_get,.-rem_4bit_get - -.global gcm_ghash_4bit -.type gcm_ghash_4bit,%function -gcm_ghash_4bit: - sub r12,pc,#8 - add $len,$inp,$len @ $len to point at the end - stmdb sp!,{r3-r11,lr} @ save $len/end too - sub r12,r12,#48 @ &rem_4bit - - ldmia r12,{r4-r11} @ copy rem_4bit ... - stmdb sp!,{r4-r11} @ ... to stack - - ldrb $nlo,[$inp,#15] - ldrb $nhi,[$Xi,#15] -.Louter: - eor $nlo,$nlo,$nhi - and $nhi,$nlo,#0xf0 - and $nlo,$nlo,#0x0f - mov $cnt,#14 - - add $Zhh,$Htbl,$nlo,lsl#4 - ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] - add $Thh,$Htbl,$nhi - ldrb $nlo,[$inp,#14] - - and $nhi,$Zll,#0xf @ rem - ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] - add $nhi,$nhi,$nhi - eor $Zll,$Tll,$Zll,lsr#4 - ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] - eor $Zll,$Zll,$Zlh,lsl#28 - ldrb $nhi,[$Xi,#14] - eor $Zlh,$Tlh,$Zlh,lsr#4 - eor $Zlh,$Zlh,$Zhl,lsl#28 - eor $Zhl,$Thl,$Zhl,lsr#4 - eor $Zhl,$Zhl,$Zhh,lsl#28 - eor $Zhh,$Thh,$Zhh,lsr#4 - eor $nlo,$nlo,$nhi - and $nhi,$nlo,#0xf0 - and $nlo,$nlo,#0x0f - eor $Zhh,$Zhh,$Tll,lsl#16 - -.Linner: - add $Thh,$Htbl,$nlo,lsl#4 - and $nlo,$Zll,#0xf @ rem - subs $cnt,$cnt,#1 - add $nlo,$nlo,$nlo - ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] - eor $Zll,$Tll,$Zll,lsr#4 - eor $Zll,$Zll,$Zlh,lsl#28 - eor $Zlh,$Tlh,$Zlh,lsr#4 - eor $Zlh,$Zlh,$Zhl,lsl#28 - ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] - eor $Zhl,$Thl,$Zhl,lsr#4 - ldrplb $nlo,[$inp,$cnt] - eor $Zhl,$Zhl,$Zhh,lsl#28 - eor $Zhh,$Thh,$Zhh,lsr#4 - - add $Thh,$Htbl,$nhi - and $nhi,$Zll,#0xf @ rem - eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] - add $nhi,$nhi,$nhi - ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] - eor $Zll,$Tll,$Zll,lsr#4 - ldrplb $Tll,[$Xi,$cnt] - eor $Zll,$Zll,$Zlh,lsl#28 - eor $Zlh,$Tlh,$Zlh,lsr#4 - ldrh $Tlh,[sp,$nhi] - eor $Zlh,$Zlh,$Zhl,lsl#28 - eor $Zhl,$Thl,$Zhl,lsr#4 - eor $Zhl,$Zhl,$Zhh,lsl#28 - eorpl $nlo,$nlo,$Tll - eor $Zhh,$Thh,$Zhh,lsr#4 - andpl $nhi,$nlo,#0xf0 - andpl $nlo,$nlo,#0x0f - eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] - bpl .Linner - - ldr $len,[sp,#32] @ re-load $len/end - add $inp,$inp,#16 - mov $nhi,$Zll -___ - &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]"); -$code.=<<___; - bne .Louter - - add sp,sp,#36 -#if __ARM_ARCH__>=5 - ldmia sp!,{r4-r11,pc} -#else - ldmia sp!,{r4-r11,lr} - tst lr,#1 - moveq pc,lr @ be binary compatible with V4, yet - bx lr @ interoperable with Thumb ISA:-) -#endif -.size gcm_ghash_4bit,.-gcm_ghash_4bit - -.global gcm_gmult_4bit -.type gcm_gmult_4bit,%function -gcm_gmult_4bit: - stmdb sp!,{r4-r11,lr} - ldrb $nlo,[$Xi,#15] - b rem_4bit_get -.Lrem_4bit_got: - and $nhi,$nlo,#0xf0 - and $nlo,$nlo,#0x0f - mov $cnt,#14 - - add $Zhh,$Htbl,$nlo,lsl#4 - ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] - ldrb $nlo,[$Xi,#14] - - add $Thh,$Htbl,$nhi - and $nhi,$Zll,#0xf @ rem - ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] - add $nhi,$nhi,$nhi - eor $Zll,$Tll,$Zll,lsr#4 - ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] - eor $Zll,$Zll,$Zlh,lsl#28 - eor $Zlh,$Tlh,$Zlh,lsr#4 - eor $Zlh,$Zlh,$Zhl,lsl#28 - eor $Zhl,$Thl,$Zhl,lsr#4 - eor $Zhl,$Zhl,$Zhh,lsl#28 - eor $Zhh,$Thh,$Zhh,lsr#4 - and $nhi,$nlo,#0xf0 - eor $Zhh,$Zhh,$Tll,lsl#16 - and $nlo,$nlo,#0x0f - -.Loop: - add $Thh,$Htbl,$nlo,lsl#4 - and $nlo,$Zll,#0xf @ rem - subs $cnt,$cnt,#1 - add $nlo,$nlo,$nlo - ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] - eor $Zll,$Tll,$Zll,lsr#4 - eor $Zll,$Zll,$Zlh,lsl#28 - eor $Zlh,$Tlh,$Zlh,lsr#4 - eor $Zlh,$Zlh,$Zhl,lsl#28 - ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] - eor $Zhl,$Thl,$Zhl,lsr#4 - ldrplb $nlo,[$Xi,$cnt] - eor $Zhl,$Zhl,$Zhh,lsl#28 - eor $Zhh,$Thh,$Zhh,lsr#4 - - add $Thh,$Htbl,$nhi - and $nhi,$Zll,#0xf @ rem - eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] - add $nhi,$nhi,$nhi - ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] - eor $Zll,$Tll,$Zll,lsr#4 - eor $Zll,$Zll,$Zlh,lsl#28 - eor $Zlh,$Tlh,$Zlh,lsr#4 - ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] - eor $Zlh,$Zlh,$Zhl,lsl#28 - eor $Zhl,$Thl,$Zhl,lsr#4 - eor $Zhl,$Zhl,$Zhh,lsl#28 - eor $Zhh,$Thh,$Zhh,lsr#4 - andpl $nhi,$nlo,#0xf0 - andpl $nlo,$nlo,#0x0f - eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] - bpl .Loop -___ - &Zsmash(); -$code.=<<___; -#if __ARM_ARCH__>=5 - ldmia sp!,{r4-r11,pc} -#else - ldmia sp!,{r4-r11,lr} - tst lr,#1 - moveq pc,lr @ be binary compatible with V4, yet - bx lr @ interoperable with Thumb ISA:-) -#endif -.size gcm_gmult_4bit,.-gcm_gmult_4bit -___ -{ -my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); -my ($t0,$t1,$t2,$t3)=map("q$_",(8..12)); -my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31)); - -sub clmul64x64 { -my ($r,$a,$b)=@_; -$code.=<<___; - vext.8 $t0#lo, $a, $a, #1 @ A1 - vmull.p8 $t0, $t0#lo, $b @ F = A1*B - vext.8 $r#lo, $b, $b, #1 @ B1 - vmull.p8 $r, $a, $r#lo @ E = A*B1 - vext.8 $t1#lo, $a, $a, #2 @ A2 - vmull.p8 $t1, $t1#lo, $b @ H = A2*B - vext.8 $t3#lo, $b, $b, #2 @ B2 - vmull.p8 $t3, $a, $t3#lo @ G = A*B2 - vext.8 $t2#lo, $a, $a, #3 @ A3 - veor $t0, $t0, $r @ L = E + F - vmull.p8 $t2, $t2#lo, $b @ J = A3*B - vext.8 $r#lo, $b, $b, #3 @ B3 - veor $t1, $t1, $t3 @ M = G + H - vmull.p8 $r, $a, $r#lo @ I = A*B3 - veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8 - vand $t0#hi, $t0#hi, $k48 - vext.8 $t3#lo, $b, $b, #4 @ B4 - veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16 - vand $t1#hi, $t1#hi, $k32 - vmull.p8 $t3, $a, $t3#lo @ K = A*B4 - veor $t2, $t2, $r @ N = I + J - veor $t0#lo, $t0#lo, $t0#hi - veor $t1#lo, $t1#lo, $t1#hi - veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24 - vand $t2#hi, $t2#hi, $k16 - vext.8 $t0, $t0, $t0, #15 - veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32 - vmov.i64 $t3#hi, #0 - vext.8 $t1, $t1, $t1, #14 - veor $t2#lo, $t2#lo, $t2#hi - vmull.p8 $r, $a, $b @ D = A*B - vext.8 $t3, $t3, $t3, #12 - vext.8 $t2, $t2, $t2, #13 - veor $t0, $t0, $t1 - veor $t2, $t2, $t3 - veor $r, $r, $t0 - veor $r, $r, $t2 -___ -} - -$code.=<<___; -#if __ARM_ARCH__>=7 -.fpu neon - -.global gcm_init_neon -.type gcm_init_neon,%function -.align 4 -gcm_init_neon: - vld1.64 $IN#hi,[r1,:64]! @ load H - vmov.i8 $t0,#0xe1 - vld1.64 $IN#lo,[r1,:64] - vshl.i64 $t0#hi,#57 - vshr.u64 $t0#lo,#63 @ t0=0xc2....01 - vdup.8 $t1,$IN#hi[7] - vshr.u64 $Hlo,$IN#lo,#63 - vshr.s8 $t1,#7 @ broadcast carry bit - vshl.i64 $IN,$IN,#1 - vand $t0,$t0,$t1 - vorr $IN#hi,$Hlo @ H<<<=1 - veor $IN,$IN,$t0 @ twisted H - vstmia r0,{$IN} - - ret @ bx lr -.size gcm_init_neon,.-gcm_init_neon - -.global gcm_gmult_neon -.type gcm_gmult_neon,%function -.align 4 -gcm_gmult_neon: - vld1.64 $IN#hi,[$Xi,:64]! @ load Xi - vld1.64 $IN#lo,[$Xi,:64]! - vmov.i64 $k48,#0x0000ffffffffffff - vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H - vmov.i64 $k32,#0x00000000ffffffff -#ifdef __ARMEL__ - vrev64.8 $IN,$IN -#endif - vmov.i64 $k16,#0x000000000000ffff - veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing - mov $len,#16 - b .Lgmult_neon -.size gcm_gmult_neon,.-gcm_gmult_neon - -.global gcm_ghash_neon -.type gcm_ghash_neon,%function -.align 4 -gcm_ghash_neon: - vld1.64 $Xl#hi,[$Xi,:64]! @ load Xi - vld1.64 $Xl#lo,[$Xi,:64]! - vmov.i64 $k48,#0x0000ffffffffffff - vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H - vmov.i64 $k32,#0x00000000ffffffff -#ifdef __ARMEL__ - vrev64.8 $Xl,$Xl -#endif - vmov.i64 $k16,#0x000000000000ffff - veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing - -.Loop_neon: - vld1.64 $IN#hi,[$inp]! @ load inp - vld1.64 $IN#lo,[$inp]! -#ifdef __ARMEL__ - vrev64.8 $IN,$IN -#endif - veor $IN,$Xl @ inp^=Xi -.Lgmult_neon: -___ - &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo -$code.=<<___; - veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing -___ - &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi) - &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi -$code.=<<___; - veor $Xm,$Xm,$Xl @ Karatsuba post-processing - veor $Xm,$Xm,$Xh - veor $Xl#hi,$Xl#hi,$Xm#lo - veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result - - @ equivalent of reduction_avx from ghash-x86_64.pl - vshl.i64 $t1,$Xl,#57 @ 1st phase - vshl.i64 $t2,$Xl,#62 - veor $t2,$t2,$t1 @ - vshl.i64 $t1,$Xl,#63 - veor $t2, $t2, $t1 @ - veor $Xl#hi,$Xl#hi,$t2#lo @ - veor $Xh#lo,$Xh#lo,$t2#hi - - vshr.u64 $t2,$Xl,#1 @ 2nd phase - veor $Xh,$Xh,$Xl - veor $Xl,$Xl,$t2 @ - vshr.u64 $t2,$t2,#6 - vshr.u64 $Xl,$Xl,#1 @ - veor $Xl,$Xl,$Xh @ - veor $Xl,$Xl,$t2 @ - - subs $len,#16 - bne .Loop_neon - -#ifdef __ARMEL__ - vrev64.8 $Xl,$Xl -#endif - sub $Xi,#16 - vst1.64 $Xl#hi,[$Xi,:64]! @ write out Xi - vst1.64 $Xl#lo,[$Xi,:64] - - ret @ bx lr -.size gcm_ghash_neon,.-gcm_ghash_neon -#endif -___ -} -$code.=<<___; -.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>" -.align 2 -___ - -foreach (split("\n",$code)) { - s/\`([^\`]*)\`/eval $1/geo; - - s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or - s/\bret\b/bx lr/go or - s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 - - print $_,"\n"; -} -close STDOUT; # enforce flush |