diff options
Diffstat (limited to 'app/openssl/crypto/bn/asm/s390x-mont.pl')
-rw-r--r-- | app/openssl/crypto/bn/asm/s390x-mont.pl | 277 |
1 files changed, 0 insertions, 277 deletions
diff --git a/app/openssl/crypto/bn/asm/s390x-mont.pl b/app/openssl/crypto/bn/asm/s390x-mont.pl deleted file mode 100644 index 9fd64e81..00000000 --- a/app/openssl/crypto/bn/asm/s390x-mont.pl +++ /dev/null @@ -1,277 +0,0 @@ -#!/usr/bin/env perl - -# ==================================================================== -# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL -# project. The module is, however, dual licensed under OpenSSL and -# CRYPTOGAMS licenses depending on where you obtain it. For further -# details see http://www.openssl.org/~appro/cryptogams/. -# ==================================================================== - -# April 2007. -# -# Performance improvement over vanilla C code varies from 85% to 45% -# depending on key length and benchmark. Unfortunately in this context -# these are not very impressive results [for code that utilizes "wide" -# 64x64=128-bit multiplication, which is not commonly available to C -# programmers], at least hand-coded bn_asm.c replacement is known to -# provide 30-40% better results for longest keys. Well, on a second -# thought it's not very surprising, because z-CPUs are single-issue -# and _strictly_ in-order execution, while bn_mul_mont is more or less -# dependent on CPU ability to pipe-line instructions and have several -# of them "in-flight" at the same time. I mean while other methods, -# for example Karatsuba, aim to minimize amount of multiplications at -# the cost of other operations increase, bn_mul_mont aim to neatly -# "overlap" multiplications and the other operations [and on most -# platforms even minimize the amount of the other operations, in -# particular references to memory]. But it's possible to improve this -# module performance by implementing dedicated squaring code-path and -# possibly by unrolling loops... - -# January 2009. -# -# Reschedule to minimize/avoid Address Generation Interlock hazard, -# make inner loops counter-based. - -# November 2010. -# -# Adapt for -m31 build. If kernel supports what's called "highgprs" -# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit -# instructions and achieve "64-bit" performance even in 31-bit legacy -# application context. The feature is not specific to any particular -# processor, as long as it's "z-CPU". Latter implies that the code -# remains z/Architecture specific. Compatibility with 32-bit BN_ULONG -# is achieved by swapping words after 64-bit loads, follow _dswap-s. -# On z990 it was measured to perform 2.6-2.2 times better than -# compiler-generated code, less for longer keys... - -$flavour = shift; - -if ($flavour =~ /3[12]/) { - $SIZE_T=4; - $g=""; -} else { - $SIZE_T=8; - $g="g"; -} - -while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} -open STDOUT,">$output"; - -$stdframe=16*$SIZE_T+4*8; - -$mn0="%r0"; -$num="%r1"; - -# int bn_mul_mont( -$rp="%r2"; # BN_ULONG *rp, -$ap="%r3"; # const BN_ULONG *ap, -$bp="%r4"; # const BN_ULONG *bp, -$np="%r5"; # const BN_ULONG *np, -$n0="%r6"; # const BN_ULONG *n0, -#$num="160(%r15)" # int num); - -$bi="%r2"; # zaps rp -$j="%r7"; - -$ahi="%r8"; -$alo="%r9"; -$nhi="%r10"; -$nlo="%r11"; -$AHI="%r12"; -$NHI="%r13"; -$count="%r14"; -$sp="%r15"; - -$code.=<<___; -.text -.globl bn_mul_mont -.type bn_mul_mont,\@function -bn_mul_mont: - lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num - sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes - la $bp,0($num,$bp) - - st${g} %r2,2*$SIZE_T($sp) - - cghi $num,16 # - lghi %r2,0 # - blr %r14 # if($num<16) return 0; -___ -$code.=<<___ if ($flavour =~ /3[12]/); - tmll $num,4 - bnzr %r14 # if ($num&1) return 0; -___ -$code.=<<___ if ($flavour !~ /3[12]/); - cghi $num,96 # - bhr %r14 # if($num>96) return 0; -___ -$code.=<<___; - stm${g} %r3,%r15,3*$SIZE_T($sp) - - lghi $rp,-$stdframe-8 # leave room for carry bit - lcgr $j,$num # -$num - lgr %r0,$sp - la $rp,0($rp,$sp) - la $sp,0($j,$rp) # alloca - st${g} %r0,0($sp) # back chain - - sra $num,3 # restore $num - la $bp,0($j,$bp) # restore $bp - ahi $num,-1 # adjust $num for inner loop - lg $n0,0($n0) # pull n0 - _dswap $n0 - - lg $bi,0($bp) - _dswap $bi - lg $alo,0($ap) - _dswap $alo - mlgr $ahi,$bi # ap[0]*bp[0] - lgr $AHI,$ahi - - lgr $mn0,$alo # "tp[0]"*n0 - msgr $mn0,$n0 - - lg $nlo,0($np) # - _dswap $nlo - mlgr $nhi,$mn0 # np[0]*m1 - algr $nlo,$alo # +="tp[0]" - lghi $NHI,0 - alcgr $NHI,$nhi - - la $j,8(%r0) # j=1 - lr $count,$num - -.align 16 -.L1st: - lg $alo,0($j,$ap) - _dswap $alo - mlgr $ahi,$bi # ap[j]*bp[0] - algr $alo,$AHI - lghi $AHI,0 - alcgr $AHI,$ahi - - lg $nlo,0($j,$np) - _dswap $nlo - mlgr $nhi,$mn0 # np[j]*m1 - algr $nlo,$NHI - lghi $NHI,0 - alcgr $nhi,$NHI # +="tp[j]" - algr $nlo,$alo - alcgr $NHI,$nhi - - stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= - la $j,8($j) # j++ - brct $count,.L1st - - algr $NHI,$AHI - lghi $AHI,0 - alcgr $AHI,$AHI # upmost overflow bit - stg $NHI,$stdframe-8($j,$sp) - stg $AHI,$stdframe($j,$sp) - la $bp,8($bp) # bp++ - -.Louter: - lg $bi,0($bp) # bp[i] - _dswap $bi - lg $alo,0($ap) - _dswap $alo - mlgr $ahi,$bi # ap[0]*bp[i] - alg $alo,$stdframe($sp) # +=tp[0] - lghi $AHI,0 - alcgr $AHI,$ahi - - lgr $mn0,$alo - msgr $mn0,$n0 # tp[0]*n0 - - lg $nlo,0($np) # np[0] - _dswap $nlo - mlgr $nhi,$mn0 # np[0]*m1 - algr $nlo,$alo # +="tp[0]" - lghi $NHI,0 - alcgr $NHI,$nhi - - la $j,8(%r0) # j=1 - lr $count,$num - -.align 16 -.Linner: - lg $alo,0($j,$ap) - _dswap $alo - mlgr $ahi,$bi # ap[j]*bp[i] - algr $alo,$AHI - lghi $AHI,0 - alcgr $ahi,$AHI - alg $alo,$stdframe($j,$sp)# +=tp[j] - alcgr $AHI,$ahi - - lg $nlo,0($j,$np) - _dswap $nlo - mlgr $nhi,$mn0 # np[j]*m1 - algr $nlo,$NHI - lghi $NHI,0 - alcgr $nhi,$NHI - algr $nlo,$alo # +="tp[j]" - alcgr $NHI,$nhi - - stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= - la $j,8($j) # j++ - brct $count,.Linner - - algr $NHI,$AHI - lghi $AHI,0 - alcgr $AHI,$AHI - alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit - lghi $ahi,0 - alcgr $AHI,$ahi # new upmost overflow bit - stg $NHI,$stdframe-8($j,$sp) - stg $AHI,$stdframe($j,$sp) - - la $bp,8($bp) # bp++ - cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num] - jne .Louter - - l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp - la $ap,$stdframe($sp) - ahi $num,1 # restore $num, incidentally clears "borrow" - - la $j,0(%r0) - lr $count,$num -.Lsub: lg $alo,0($j,$ap) - lg $nlo,0($j,$np) - _dswap $nlo - slbgr $alo,$nlo - stg $alo,0($j,$rp) - la $j,8($j) - brct $count,.Lsub - lghi $ahi,0 - slbgr $AHI,$ahi # handle upmost carry - - ngr $ap,$AHI - lghi $np,-1 - xgr $np,$AHI - ngr $np,$rp - ogr $ap,$np # ap=borrow?tp:rp - - la $j,0(%r0) - lgr $count,$num -.Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh - _dswap $alo - stg $j,$stdframe($j,$sp) # zap tp - stg $alo,0($j,$rp) - la $j,8($j) - brct $count,.Lcopy - - la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp) - lm${g} %r6,%r15,0(%r1) - lghi %r2,1 # signal "processed" - br %r14 -.size bn_mul_mont,.-bn_mul_mont -.string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" -___ - -foreach (split("\n",$code)) { - s/\`([^\`]*)\`/eval $1/ge; - s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e; - print $_,"\n"; -} -close STDOUT; |