diff options
author | Parménides GV <parmegv@sdf.org> | 2014-04-07 20:43:34 +0200 |
---|---|---|
committer | Parménides GV <parmegv@sdf.org> | 2014-04-08 11:43:27 +0200 |
commit | c206a91d320995f37f8abb33188bfd384249da3d (patch) | |
tree | 10a7d8a9dd7f24437ac4851b8d01edbd5dd3ee3b /openssl/crypto/bn/bn_gf2m.c | |
parent | 910b0e1746ab3f63e63808b198ad51fec5b635e5 (diff) |
Next step: compile jni sources correctly.
Diffstat (limited to 'openssl/crypto/bn/bn_gf2m.c')
-rw-r--r-- | openssl/crypto/bn/bn_gf2m.c | 1035 |
1 files changed, 0 insertions, 1035 deletions
diff --git a/openssl/crypto/bn/bn_gf2m.c b/openssl/crypto/bn/bn_gf2m.c deleted file mode 100644 index 432a3aa3..00000000 --- a/openssl/crypto/bn/bn_gf2m.c +++ /dev/null @@ -1,1035 +0,0 @@ -/* crypto/bn/bn_gf2m.c */ -/* ==================================================================== - * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. - * - * The Elliptic Curve Public-Key Crypto Library (ECC Code) included - * herein is developed by SUN MICROSYSTEMS, INC., and is contributed - * to the OpenSSL project. - * - * The ECC Code is licensed pursuant to the OpenSSL open source - * license provided below. - * - * In addition, Sun covenants to all licensees who provide a reciprocal - * covenant with respect to their own patents if any, not to sue under - * current and future patent claims necessarily infringed by the making, - * using, practicing, selling, offering for sale and/or otherwise - * disposing of the ECC Code as delivered hereunder (or portions thereof), - * provided that such covenant shall not apply: - * 1) for code that a licensee deletes from the ECC Code; - * 2) separates from the ECC Code; or - * 3) for infringements caused by: - * i) the modification of the ECC Code or - * ii) the combination of the ECC Code with other software or - * devices where such combination causes the infringement. - * - * The software is originally written by Sheueling Chang Shantz and - * Douglas Stebila of Sun Microsystems Laboratories. - * - */ - -/* NOTE: This file is licensed pursuant to the OpenSSL license below - * and may be modified; but after modifications, the above covenant - * may no longer apply! In such cases, the corresponding paragraph - * ["In addition, Sun covenants ... causes the infringement."] and - * this note can be edited out; but please keep the Sun copyright - * notice and attribution. */ - -/* ==================================================================== - * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * 3. All advertising materials mentioning features or use of this - * software must display the following acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" - * - * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to - * endorse or promote products derived from this software without - * prior written permission. For written permission, please contact - * openssl-core@openssl.org. - * - * 5. Products derived from this software may not be called "OpenSSL" - * nor may "OpenSSL" appear in their names without prior written - * permission of the OpenSSL Project. - * - * 6. Redistributions of any form whatsoever must retain the following - * acknowledgment: - * "This product includes software developed by the OpenSSL Project - * for use in the OpenSSL Toolkit (http://www.openssl.org/)" - * - * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY - * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR - * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, - * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED - * OF THE POSSIBILITY OF SUCH DAMAGE. - * ==================================================================== - * - * This product includes cryptographic software written by Eric Young - * (eay@cryptsoft.com). This product includes software written by Tim - * Hudson (tjh@cryptsoft.com). - * - */ - -#include <assert.h> -#include <limits.h> -#include <stdio.h> -#include "cryptlib.h" -#include "bn_lcl.h" - -/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ -#define MAX_ITERATIONS 50 - -static const BN_ULONG SQR_tb[16] = - { 0, 1, 4, 5, 16, 17, 20, 21, - 64, 65, 68, 69, 80, 81, 84, 85 }; -/* Platform-specific macros to accelerate squaring. */ -#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) -#define SQR1(w) \ - SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ - SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ - SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ - SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ - SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ - SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ - SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] -#endif -#ifdef THIRTY_TWO_BIT -#define SQR1(w) \ - SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ - SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] -#define SQR0(w) \ - SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ - SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] -#endif - -/* Product of two polynomials a, b each with degree < BN_BITS2 - 1, - * result is a polynomial r with degree < 2 * BN_BITS - 1 - * The caller MUST ensure that the variables have the right amount - * of space allocated. - */ -#ifdef THIRTY_TWO_BIT -static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) - { - register BN_ULONG h, l, s; - BN_ULONG tab[8], top2b = a >> 30; - register BN_ULONG a1, a2, a4; - - a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; - - tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; - tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; - - s = tab[b & 0x7]; l = s; - s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; - s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; - s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; - s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; - s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; - s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; - s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; - s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; - s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; - s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; - - /* compensate for the top two bits of a */ - - if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } - if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } - - *r1 = h; *r0 = l; - } -#endif -#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) -static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) - { - register BN_ULONG h, l, s; - BN_ULONG tab[16], top3b = a >> 61; - register BN_ULONG a1, a2, a4, a8; - - a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; - - tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; - tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; - tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; - tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; - - s = tab[b & 0xF]; l = s; - s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; - s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; - s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; - s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; - s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; - s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; - s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; - s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; - s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; - s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; - s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; - s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; - s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; - s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; - s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; - - /* compensate for the top three bits of a */ - - if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } - if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } - if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } - - *r1 = h; *r0 = l; - } -#endif - -/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, - * result is a polynomial r with degree < 4 * BN_BITS2 - 1 - * The caller MUST ensure that the variables have the right amount - * of space allocated. - */ -static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0) - { - BN_ULONG m1, m0; - /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ - bn_GF2m_mul_1x1(r+3, r+2, a1, b1); - bn_GF2m_mul_1x1(r+1, r, a0, b0); - bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); - /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ - r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ - r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ - } - - -/* Add polynomials a and b and store result in r; r could be a or b, a and b - * could be equal; r is the bitwise XOR of a and b. - */ -int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) - { - int i; - const BIGNUM *at, *bt; - - bn_check_top(a); - bn_check_top(b); - - if (a->top < b->top) { at = b; bt = a; } - else { at = a; bt = b; } - - if(bn_wexpand(r, at->top) == NULL) - return 0; - - for (i = 0; i < bt->top; i++) - { - r->d[i] = at->d[i] ^ bt->d[i]; - } - for (; i < at->top; i++) - { - r->d[i] = at->d[i]; - } - - r->top = at->top; - bn_correct_top(r); - - return 1; - } - - -/* Some functions allow for representation of the irreducible polynomials - * as an int[], say p. The irreducible f(t) is then of the form: - * t^p[0] + t^p[1] + ... + t^p[k] - * where m = p[0] > p[1] > ... > p[k] = 0. - */ - - -/* Performs modular reduction of a and store result in r. r could be a. */ -int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) - { - int j, k; - int n, dN, d0, d1; - BN_ULONG zz, *z; - - bn_check_top(a); - - if (!p[0]) - { - /* reduction mod 1 => return 0 */ - BN_zero(r); - return 1; - } - - /* Since the algorithm does reduction in the r value, if a != r, copy - * the contents of a into r so we can do reduction in r. - */ - if (a != r) - { - if (!bn_wexpand(r, a->top)) return 0; - for (j = 0; j < a->top; j++) - { - r->d[j] = a->d[j]; - } - r->top = a->top; - } - z = r->d; - - /* start reduction */ - dN = p[0] / BN_BITS2; - for (j = r->top - 1; j > dN;) - { - zz = z[j]; - if (z[j] == 0) { j--; continue; } - z[j] = 0; - - for (k = 1; p[k] != 0; k++) - { - /* reducing component t^p[k] */ - n = p[0] - p[k]; - d0 = n % BN_BITS2; d1 = BN_BITS2 - d0; - n /= BN_BITS2; - z[j-n] ^= (zz>>d0); - if (d0) z[j-n-1] ^= (zz<<d1); - } - - /* reducing component t^0 */ - n = dN; - d0 = p[0] % BN_BITS2; - d1 = BN_BITS2 - d0; - z[j-n] ^= (zz >> d0); - if (d0) z[j-n-1] ^= (zz << d1); - } - - /* final round of reduction */ - while (j == dN) - { - - d0 = p[0] % BN_BITS2; - zz = z[dN] >> d0; - if (zz == 0) break; - d1 = BN_BITS2 - d0; - - /* clear up the top d1 bits */ - if (d0) - z[dN] = (z[dN] << d1) >> d1; - else - z[dN] = 0; - z[0] ^= zz; /* reduction t^0 component */ - - for (k = 1; p[k] != 0; k++) - { - BN_ULONG tmp_ulong; - - /* reducing component t^p[k]*/ - n = p[k] / BN_BITS2; - d0 = p[k] % BN_BITS2; - d1 = BN_BITS2 - d0; - z[n] ^= (zz << d0); - tmp_ulong = zz >> d1; - if (d0 && tmp_ulong) - z[n+1] ^= tmp_ulong; - } - - - } - - bn_correct_top(r); - return 1; - } - -/* Performs modular reduction of a by p and store result in r. r could be a. - * - * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_arr function. - */ -int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) - { - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr=NULL; - bn_check_top(a); - bn_check_top(p); - if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) - { - BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_arr(r, a, arr); - bn_check_top(r); -err: - if (arr) OPENSSL_free(arr); - return ret; - } - - -/* Compute the product of two polynomials a and b, reduce modulo p, and store - * the result in r. r could be a or b; a could be b. - */ -int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) - { - int zlen, i, j, k, ret = 0; - BIGNUM *s; - BN_ULONG x1, x0, y1, y0, zz[4]; - - bn_check_top(a); - bn_check_top(b); - - if (a == b) - { - return BN_GF2m_mod_sqr_arr(r, a, p, ctx); - } - - BN_CTX_start(ctx); - if ((s = BN_CTX_get(ctx)) == NULL) goto err; - - zlen = a->top + b->top + 4; - if (!bn_wexpand(s, zlen)) goto err; - s->top = zlen; - - for (i = 0; i < zlen; i++) s->d[i] = 0; - - for (j = 0; j < b->top; j += 2) - { - y0 = b->d[j]; - y1 = ((j+1) == b->top) ? 0 : b->d[j+1]; - for (i = 0; i < a->top; i += 2) - { - x0 = a->d[i]; - x1 = ((i+1) == a->top) ? 0 : a->d[i+1]; - bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); - for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k]; - } - } - - bn_correct_top(s); - if (BN_GF2m_mod_arr(r, s, p)) - ret = 1; - bn_check_top(r); - -err: - BN_CTX_end(ctx); - return ret; - } - -/* Compute the product of two polynomials a and b, reduce modulo p, and store - * the result in r. r could be a or b; a could equal b. - * - * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_mul_arr function. - */ -int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) - { - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr=NULL; - bn_check_top(a); - bn_check_top(b); - bn_check_top(p); - if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) - { - BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); - bn_check_top(r); -err: - if (arr) OPENSSL_free(arr); - return ret; - } - - -/* Square a, reduce the result mod p, and store it in a. r could be a. */ -int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) - { - int i, ret = 0; - BIGNUM *s; - - bn_check_top(a); - BN_CTX_start(ctx); - if ((s = BN_CTX_get(ctx)) == NULL) return 0; - if (!bn_wexpand(s, 2 * a->top)) goto err; - - for (i = a->top - 1; i >= 0; i--) - { - s->d[2*i+1] = SQR1(a->d[i]); - s->d[2*i ] = SQR0(a->d[i]); - } - - s->top = 2 * a->top; - bn_correct_top(s); - if (!BN_GF2m_mod_arr(r, s, p)) goto err; - bn_check_top(r); - ret = 1; -err: - BN_CTX_end(ctx); - return ret; - } - -/* Square a, reduce the result mod p, and store it in a. r could be a. - * - * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_sqr_arr function. - */ -int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) - { - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr=NULL; - - bn_check_top(a); - bn_check_top(p); - if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) - { - BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); - bn_check_top(r); -err: - if (arr) OPENSSL_free(arr); - return ret; - } - - -/* Invert a, reduce modulo p, and store the result in r. r could be a. - * Uses Modified Almost Inverse Algorithm (Algorithm 10) from - * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation - * of Elliptic Curve Cryptography Over Binary Fields". - */ -int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) - { - BIGNUM *b, *c, *u, *v, *tmp; - int ret = 0; - - bn_check_top(a); - bn_check_top(p); - - BN_CTX_start(ctx); - - b = BN_CTX_get(ctx); - c = BN_CTX_get(ctx); - u = BN_CTX_get(ctx); - v = BN_CTX_get(ctx); - if (v == NULL) goto err; - - if (!BN_one(b)) goto err; - if (!BN_GF2m_mod(u, a, p)) goto err; - if (!BN_copy(v, p)) goto err; - - if (BN_is_zero(u)) goto err; - - while (1) - { - while (!BN_is_odd(u)) - { - if (BN_is_zero(u)) goto err; - if (!BN_rshift1(u, u)) goto err; - if (BN_is_odd(b)) - { - if (!BN_GF2m_add(b, b, p)) goto err; - } - if (!BN_rshift1(b, b)) goto err; - } - - if (BN_abs_is_word(u, 1)) break; - - if (BN_num_bits(u) < BN_num_bits(v)) - { - tmp = u; u = v; v = tmp; - tmp = b; b = c; c = tmp; - } - - if (!BN_GF2m_add(u, u, v)) goto err; - if (!BN_GF2m_add(b, b, c)) goto err; - } - - - if (!BN_copy(r, b)) goto err; - bn_check_top(r); - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; - } - -/* Invert xx, reduce modulo p, and store the result in r. r could be xx. - * - * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_inv function. - */ -int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) - { - BIGNUM *field; - int ret = 0; - - bn_check_top(xx); - BN_CTX_start(ctx); - if ((field = BN_CTX_get(ctx)) == NULL) goto err; - if (!BN_GF2m_arr2poly(p, field)) goto err; - - ret = BN_GF2m_mod_inv(r, xx, field, ctx); - bn_check_top(r); - -err: - BN_CTX_end(ctx); - return ret; - } - - -#ifndef OPENSSL_SUN_GF2M_DIV -/* Divide y by x, reduce modulo p, and store the result in r. r could be x - * or y, x could equal y. - */ -int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) - { - BIGNUM *xinv = NULL; - int ret = 0; - - bn_check_top(y); - bn_check_top(x); - bn_check_top(p); - - BN_CTX_start(ctx); - xinv = BN_CTX_get(ctx); - if (xinv == NULL) goto err; - - if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err; - if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err; - bn_check_top(r); - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; - } -#else -/* Divide y by x, reduce modulo p, and store the result in r. r could be x - * or y, x could equal y. - * Uses algorithm Modular_Division_GF(2^m) from - * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to - * the Great Divide". - */ -int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) - { - BIGNUM *a, *b, *u, *v; - int ret = 0; - - bn_check_top(y); - bn_check_top(x); - bn_check_top(p); - - BN_CTX_start(ctx); - - a = BN_CTX_get(ctx); - b = BN_CTX_get(ctx); - u = BN_CTX_get(ctx); - v = BN_CTX_get(ctx); - if (v == NULL) goto err; - - /* reduce x and y mod p */ - if (!BN_GF2m_mod(u, y, p)) goto err; - if (!BN_GF2m_mod(a, x, p)) goto err; - if (!BN_copy(b, p)) goto err; - - while (!BN_is_odd(a)) - { - if (!BN_rshift1(a, a)) goto err; - if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; - if (!BN_rshift1(u, u)) goto err; - } - - do - { - if (BN_GF2m_cmp(b, a) > 0) - { - if (!BN_GF2m_add(b, b, a)) goto err; - if (!BN_GF2m_add(v, v, u)) goto err; - do - { - if (!BN_rshift1(b, b)) goto err; - if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err; - if (!BN_rshift1(v, v)) goto err; - } while (!BN_is_odd(b)); - } - else if (BN_abs_is_word(a, 1)) - break; - else - { - if (!BN_GF2m_add(a, a, b)) goto err; - if (!BN_GF2m_add(u, u, v)) goto err; - do - { - if (!BN_rshift1(a, a)) goto err; - if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; - if (!BN_rshift1(u, u)) goto err; - } while (!BN_is_odd(a)); - } - } while (1); - - if (!BN_copy(r, u)) goto err; - bn_check_top(r); - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; - } -#endif - -/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx - * or yy, xx could equal yy. - * - * This function calls down to the BN_GF2m_mod_div implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_div function. - */ -int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int p[], BN_CTX *ctx) - { - BIGNUM *field; - int ret = 0; - - bn_check_top(yy); - bn_check_top(xx); - - BN_CTX_start(ctx); - if ((field = BN_CTX_get(ctx)) == NULL) goto err; - if (!BN_GF2m_arr2poly(p, field)) goto err; - - ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); - bn_check_top(r); - -err: - BN_CTX_end(ctx); - return ret; - } - - -/* Compute the bth power of a, reduce modulo p, and store - * the result in r. r could be a. - * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. - */ -int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], BN_CTX *ctx) - { - int ret = 0, i, n; - BIGNUM *u; - - bn_check_top(a); - bn_check_top(b); - - if (BN_is_zero(b)) - return(BN_one(r)); - - if (BN_abs_is_word(b, 1)) - return (BN_copy(r, a) != NULL); - - BN_CTX_start(ctx); - if ((u = BN_CTX_get(ctx)) == NULL) goto err; - - if (!BN_GF2m_mod_arr(u, a, p)) goto err; - - n = BN_num_bits(b) - 1; - for (i = n - 1; i >= 0; i--) - { - if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err; - if (BN_is_bit_set(b, i)) - { - if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err; - } - } - if (!BN_copy(r, u)) goto err; - bn_check_top(r); - ret = 1; -err: - BN_CTX_end(ctx); - return ret; - } - -/* Compute the bth power of a, reduce modulo p, and store - * the result in r. r could be a. - * - * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_exp_arr function. - */ -int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) - { - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr=NULL; - bn_check_top(a); - bn_check_top(b); - bn_check_top(p); - if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) - { - BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); - bn_check_top(r); -err: - if (arr) OPENSSL_free(arr); - return ret; - } - -/* Compute the square root of a, reduce modulo p, and store - * the result in r. r could be a. - * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. - */ -int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) - { - int ret = 0; - BIGNUM *u; - - bn_check_top(a); - - if (!p[0]) - { - /* reduction mod 1 => return 0 */ - BN_zero(r); - return 1; - } - - BN_CTX_start(ctx); - if ((u = BN_CTX_get(ctx)) == NULL) goto err; - - if (!BN_set_bit(u, p[0] - 1)) goto err; - ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); - bn_check_top(r); - -err: - BN_CTX_end(ctx); - return ret; - } - -/* Compute the square root of a, reduce modulo p, and store - * the result in r. r could be a. - * - * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_sqrt_arr function. - */ -int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) - { - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr=NULL; - bn_check_top(a); - bn_check_top(p); - if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) - { - BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); - bn_check_top(r); -err: - if (arr) OPENSSL_free(arr); - return ret; - } - -/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. - * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. - */ -int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CTX *ctx) - { - int ret = 0, count = 0, j; - BIGNUM *a, *z, *rho, *w, *w2, *tmp; - - bn_check_top(a_); - - if (!p[0]) - { - /* reduction mod 1 => return 0 */ - BN_zero(r); - return 1; - } - - BN_CTX_start(ctx); - a = BN_CTX_get(ctx); - z = BN_CTX_get(ctx); - w = BN_CTX_get(ctx); - if (w == NULL) goto err; - - if (!BN_GF2m_mod_arr(a, a_, p)) goto err; - - if (BN_is_zero(a)) - { - BN_zero(r); - ret = 1; - goto err; - } - - if (p[0] & 0x1) /* m is odd */ - { - /* compute half-trace of a */ - if (!BN_copy(z, a)) goto err; - for (j = 1; j <= (p[0] - 1) / 2; j++) - { - if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; - if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; - if (!BN_GF2m_add(z, z, a)) goto err; - } - - } - else /* m is even */ - { - rho = BN_CTX_get(ctx); - w2 = BN_CTX_get(ctx); - tmp = BN_CTX_get(ctx); - if (tmp == NULL) goto err; - do - { - if (!BN_rand(rho, p[0], 0, 0)) goto err; - if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; - BN_zero(z); - if (!BN_copy(w, rho)) goto err; - for (j = 1; j <= p[0] - 1; j++) - { - if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; - if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err; - if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err; - if (!BN_GF2m_add(z, z, tmp)) goto err; - if (!BN_GF2m_add(w, w2, rho)) goto err; - } - count++; - } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); - if (BN_is_zero(w)) - { - BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS); - goto err; - } - } - - if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; - if (!BN_GF2m_add(w, z, w)) goto err; - if (BN_GF2m_cmp(w, a)) - { - BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); - goto err; - } - - if (!BN_copy(r, z)) goto err; - bn_check_top(r); - - ret = 1; - -err: - BN_CTX_end(ctx); - return ret; - } - -/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. - * - * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper - * function is only provided for convenience; for best performance, use the - * BN_GF2m_mod_solve_quad_arr function. - */ -int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) - { - int ret = 0; - const int max = BN_num_bits(p) + 1; - int *arr=NULL; - bn_check_top(a); - bn_check_top(p); - if ((arr = (int *)OPENSSL_malloc(sizeof(int) * - max)) == NULL) goto err; - ret = BN_GF2m_poly2arr(p, arr, max); - if (!ret || ret > max) - { - BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH); - goto err; - } - ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); - bn_check_top(r); -err: - if (arr) OPENSSL_free(arr); - return ret; - } - -/* Convert the bit-string representation of a polynomial - * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding - * to the bits with non-zero coefficient. Array is terminated with -1. - * Up to max elements of the array will be filled. Return value is total - * number of array elements that would be filled if array was large enough. - */ -int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) - { - int i, j, k = 0; - BN_ULONG mask; - - if (BN_is_zero(a)) - return 0; - - for (i = a->top - 1; i >= 0; i--) - { - if (!a->d[i]) - /* skip word if a->d[i] == 0 */ - continue; - mask = BN_TBIT; - for (j = BN_BITS2 - 1; j >= 0; j--) - { - if (a->d[i] & mask) - { - if (k < max) p[k] = BN_BITS2 * i + j; - k++; - } - mask >>= 1; - } - } - - if (k < max) { - p[k] = -1; - k++; - } - - return k; - } - -/* Convert the coefficient array representation of a polynomial to a - * bit-string. The array must be terminated by -1. - */ -int BN_GF2m_arr2poly(const int p[], BIGNUM *a) - { - int i; - - bn_check_top(a); - BN_zero(a); - for (i = 0; p[i] != -1; i++) - { - if (BN_set_bit(a, p[i]) == 0) - return 0; - } - bn_check_top(a); - - return 1; - } - |