summaryrefslogtreecommitdiff
path: root/app/snappy/snappy-test.cc
diff options
context:
space:
mode:
authorParménides GV <parmegv@sdf.org>2014-06-13 13:24:13 +0200
committerParménides GV <parmegv@sdf.org>2014-06-13 13:24:13 +0200
commit69b10487fcd63dfe1e94fa97c9f3fd9b035646b4 (patch)
treed4960893a4444634d404c7fbe4fa3e8778d30179 /app/snappy/snappy-test.cc
parent9f6cfff38ae87922adc022300e1e2fd1c0d4c3e4 (diff)
parente45929e220fe49e30235a1d4d36c1a413547f8bf (diff)
Merge branch 'develop'
Diffstat (limited to 'app/snappy/snappy-test.cc')
-rw-r--r--app/snappy/snappy-test.cc606
1 files changed, 606 insertions, 0 deletions
diff --git a/app/snappy/snappy-test.cc b/app/snappy/snappy-test.cc
new file mode 100644
index 00000000..46194109
--- /dev/null
+++ b/app/snappy/snappy-test.cc
@@ -0,0 +1,606 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Various stubs for the unit tests for the open-source version of Snappy.
+
+#include "snappy-test.h"
+
+#ifdef HAVE_WINDOWS_H
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#endif
+
+#include <algorithm>
+
+DEFINE_bool(run_microbenchmarks, true,
+ "Run microbenchmarks before doing anything else.");
+
+namespace snappy {
+
+string ReadTestDataFile(const string& base, size_t size_limit) {
+ string contents;
+ const char* srcdir = getenv("srcdir"); // This is set by Automake.
+ string prefix;
+ if (srcdir) {
+ prefix = string(srcdir) + "/";
+ }
+ file::GetContents(prefix + "testdata/" + base, &contents, file::Defaults()
+ ).CheckSuccess();
+ if (size_limit > 0) {
+ contents = contents.substr(0, size_limit);
+ }
+ return contents;
+}
+
+string ReadTestDataFile(const string& base) {
+ return ReadTestDataFile(base, 0);
+}
+
+string StringPrintf(const char* format, ...) {
+ char buf[4096];
+ va_list ap;
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ return buf;
+}
+
+bool benchmark_running = false;
+int64 benchmark_real_time_us = 0;
+int64 benchmark_cpu_time_us = 0;
+string *benchmark_label = NULL;
+int64 benchmark_bytes_processed = 0;
+
+void ResetBenchmarkTiming() {
+ benchmark_real_time_us = 0;
+ benchmark_cpu_time_us = 0;
+}
+
+#ifdef WIN32
+LARGE_INTEGER benchmark_start_real;
+FILETIME benchmark_start_cpu;
+#else // WIN32
+struct timeval benchmark_start_real;
+struct rusage benchmark_start_cpu;
+#endif // WIN32
+
+void StartBenchmarkTiming() {
+#ifdef WIN32
+ QueryPerformanceCounter(&benchmark_start_real);
+ FILETIME dummy;
+ CHECK(GetProcessTimes(
+ GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_start_cpu));
+#else
+ gettimeofday(&benchmark_start_real, NULL);
+ if (getrusage(RUSAGE_SELF, &benchmark_start_cpu) == -1) {
+ perror("getrusage(RUSAGE_SELF)");
+ exit(1);
+ }
+#endif
+ benchmark_running = true;
+}
+
+void StopBenchmarkTiming() {
+ if (!benchmark_running) {
+ return;
+ }
+
+#ifdef WIN32
+ LARGE_INTEGER benchmark_stop_real;
+ LARGE_INTEGER benchmark_frequency;
+ QueryPerformanceCounter(&benchmark_stop_real);
+ QueryPerformanceFrequency(&benchmark_frequency);
+
+ double elapsed_real = static_cast<double>(
+ benchmark_stop_real.QuadPart - benchmark_start_real.QuadPart) /
+ benchmark_frequency.QuadPart;
+ benchmark_real_time_us += elapsed_real * 1e6 + 0.5;
+
+ FILETIME benchmark_stop_cpu, dummy;
+ CHECK(GetProcessTimes(
+ GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_stop_cpu));
+
+ ULARGE_INTEGER start_ulargeint;
+ start_ulargeint.LowPart = benchmark_start_cpu.dwLowDateTime;
+ start_ulargeint.HighPart = benchmark_start_cpu.dwHighDateTime;
+
+ ULARGE_INTEGER stop_ulargeint;
+ stop_ulargeint.LowPart = benchmark_stop_cpu.dwLowDateTime;
+ stop_ulargeint.HighPart = benchmark_stop_cpu.dwHighDateTime;
+
+ benchmark_cpu_time_us +=
+ (stop_ulargeint.QuadPart - start_ulargeint.QuadPart + 5) / 10;
+#else // WIN32
+ struct timeval benchmark_stop_real;
+ gettimeofday(&benchmark_stop_real, NULL);
+ benchmark_real_time_us +=
+ 1000000 * (benchmark_stop_real.tv_sec - benchmark_start_real.tv_sec);
+ benchmark_real_time_us +=
+ (benchmark_stop_real.tv_usec - benchmark_start_real.tv_usec);
+
+ struct rusage benchmark_stop_cpu;
+ if (getrusage(RUSAGE_SELF, &benchmark_stop_cpu) == -1) {
+ perror("getrusage(RUSAGE_SELF)");
+ exit(1);
+ }
+ benchmark_cpu_time_us += 1000000 * (benchmark_stop_cpu.ru_utime.tv_sec -
+ benchmark_start_cpu.ru_utime.tv_sec);
+ benchmark_cpu_time_us += (benchmark_stop_cpu.ru_utime.tv_usec -
+ benchmark_start_cpu.ru_utime.tv_usec);
+#endif // WIN32
+
+ benchmark_running = false;
+}
+
+void SetBenchmarkLabel(const string& str) {
+ if (benchmark_label) {
+ delete benchmark_label;
+ }
+ benchmark_label = new string(str);
+}
+
+void SetBenchmarkBytesProcessed(int64 bytes) {
+ benchmark_bytes_processed = bytes;
+}
+
+struct BenchmarkRun {
+ int64 real_time_us;
+ int64 cpu_time_us;
+};
+
+struct BenchmarkCompareCPUTime {
+ bool operator() (const BenchmarkRun& a, const BenchmarkRun& b) const {
+ return a.cpu_time_us < b.cpu_time_us;
+ }
+};
+
+void Benchmark::Run() {
+ for (int test_case_num = start_; test_case_num <= stop_; ++test_case_num) {
+ // Run a few iterations first to find out approximately how fast
+ // the benchmark is.
+ const int kCalibrateIterations = 100;
+ ResetBenchmarkTiming();
+ StartBenchmarkTiming();
+ (*function_)(kCalibrateIterations, test_case_num);
+ StopBenchmarkTiming();
+
+ // Let each test case run for about 200ms, but at least as many
+ // as we used to calibrate.
+ // Run five times and pick the median.
+ const int kNumRuns = 5;
+ const int kMedianPos = kNumRuns / 2;
+ int num_iterations = 0;
+ if (benchmark_real_time_us > 0) {
+ num_iterations = 200000 * kCalibrateIterations / benchmark_real_time_us;
+ }
+ num_iterations = max(num_iterations, kCalibrateIterations);
+ BenchmarkRun benchmark_runs[kNumRuns];
+
+ for (int run = 0; run < kNumRuns; ++run) {
+ ResetBenchmarkTiming();
+ StartBenchmarkTiming();
+ (*function_)(num_iterations, test_case_num);
+ StopBenchmarkTiming();
+
+ benchmark_runs[run].real_time_us = benchmark_real_time_us;
+ benchmark_runs[run].cpu_time_us = benchmark_cpu_time_us;
+ }
+
+ string heading = StringPrintf("%s/%d", name_.c_str(), test_case_num);
+ string human_readable_speed;
+
+ nth_element(benchmark_runs,
+ benchmark_runs + kMedianPos,
+ benchmark_runs + kNumRuns,
+ BenchmarkCompareCPUTime());
+ int64 real_time_us = benchmark_runs[kMedianPos].real_time_us;
+ int64 cpu_time_us = benchmark_runs[kMedianPos].cpu_time_us;
+ if (cpu_time_us <= 0) {
+ human_readable_speed = "?";
+ } else {
+ int64 bytes_per_second =
+ benchmark_bytes_processed * 1000000 / cpu_time_us;
+ if (bytes_per_second < 1024) {
+ human_readable_speed = StringPrintf("%dB/s", bytes_per_second);
+ } else if (bytes_per_second < 1024 * 1024) {
+ human_readable_speed = StringPrintf(
+ "%.1fkB/s", bytes_per_second / 1024.0f);
+ } else if (bytes_per_second < 1024 * 1024 * 1024) {
+ human_readable_speed = StringPrintf(
+ "%.1fMB/s", bytes_per_second / (1024.0f * 1024.0f));
+ } else {
+ human_readable_speed = StringPrintf(
+ "%.1fGB/s", bytes_per_second / (1024.0f * 1024.0f * 1024.0f));
+ }
+ }
+
+ fprintf(stderr,
+#ifdef WIN32
+ "%-18s %10I64d %10I64d %10d %s %s\n",
+#else
+ "%-18s %10lld %10lld %10d %s %s\n",
+#endif
+ heading.c_str(),
+ static_cast<long long>(real_time_us * 1000 / num_iterations),
+ static_cast<long long>(cpu_time_us * 1000 / num_iterations),
+ num_iterations,
+ human_readable_speed.c_str(),
+ benchmark_label->c_str());
+ }
+}
+
+#ifdef HAVE_LIBZ
+
+ZLib::ZLib()
+ : comp_init_(false),
+ uncomp_init_(false) {
+ Reinit();
+}
+
+ZLib::~ZLib() {
+ if (comp_init_) { deflateEnd(&comp_stream_); }
+ if (uncomp_init_) { inflateEnd(&uncomp_stream_); }
+}
+
+void ZLib::Reinit() {
+ compression_level_ = Z_DEFAULT_COMPRESSION;
+ window_bits_ = MAX_WBITS;
+ mem_level_ = 8; // DEF_MEM_LEVEL
+ if (comp_init_) {
+ deflateEnd(&comp_stream_);
+ comp_init_ = false;
+ }
+ if (uncomp_init_) {
+ inflateEnd(&uncomp_stream_);
+ uncomp_init_ = false;
+ }
+ first_chunk_ = true;
+}
+
+void ZLib::Reset() {
+ first_chunk_ = true;
+}
+
+// --------- COMPRESS MODE
+
+// Initialization method to be called if we hit an error while
+// compressing. On hitting an error, call this method before returning
+// the error.
+void ZLib::CompressErrorInit() {
+ deflateEnd(&comp_stream_);
+ comp_init_ = false;
+ Reset();
+}
+
+int ZLib::DeflateInit() {
+ return deflateInit2(&comp_stream_,
+ compression_level_,
+ Z_DEFLATED,
+ window_bits_,
+ mem_level_,
+ Z_DEFAULT_STRATEGY);
+}
+
+int ZLib::CompressInit(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong *sourceLen) {
+ int err;
+
+ comp_stream_.next_in = (Bytef*)source;
+ comp_stream_.avail_in = (uInt)*sourceLen;
+ if ((uLong)comp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;
+ comp_stream_.next_out = dest;
+ comp_stream_.avail_out = (uInt)*destLen;
+ if ((uLong)comp_stream_.avail_out != *destLen) return Z_BUF_ERROR;
+
+ if ( !first_chunk_ ) // only need to set up stream the first time through
+ return Z_OK;
+
+ if (comp_init_) { // we've already initted it
+ err = deflateReset(&comp_stream_);
+ if (err != Z_OK) {
+ LOG(WARNING) << "ERROR: Can't reset compress object; creating a new one";
+ deflateEnd(&comp_stream_);
+ comp_init_ = false;
+ }
+ }
+ if (!comp_init_) { // first use
+ comp_stream_.zalloc = (alloc_func)0;
+ comp_stream_.zfree = (free_func)0;
+ comp_stream_.opaque = (voidpf)0;
+ err = DeflateInit();
+ if (err != Z_OK) return err;
+ comp_init_ = true;
+ }
+ return Z_OK;
+}
+
+// In a perfect world we'd always have the full buffer to compress
+// when the time came, and we could just call Compress(). Alas, we
+// want to do chunked compression on our webserver. In this
+// application, we compress the header, send it off, then compress the
+// results, send them off, then compress the footer. Thus we need to
+// use the chunked compression features of zlib.
+int ZLib::CompressAtMostOrAll(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong *sourceLen,
+ int flush_mode) { // Z_FULL_FLUSH or Z_FINISH
+ int err;
+
+ if ( (err=CompressInit(dest, destLen, source, sourceLen)) != Z_OK )
+ return err;
+
+ // This is used to figure out how many bytes we wrote *this chunk*
+ int compressed_size = comp_stream_.total_out;
+
+ // Some setup happens only for the first chunk we compress in a run
+ if ( first_chunk_ ) {
+ first_chunk_ = false;
+ }
+
+ // flush_mode is Z_FINISH for all mode, Z_SYNC_FLUSH for incremental
+ // compression.
+ err = deflate(&comp_stream_, flush_mode);
+
+ *sourceLen = comp_stream_.avail_in;
+
+ if ((err == Z_STREAM_END || err == Z_OK)
+ && comp_stream_.avail_in == 0
+ && comp_stream_.avail_out != 0 ) {
+ // we processed everything ok and the output buffer was large enough.
+ ;
+ } else if (err == Z_STREAM_END && comp_stream_.avail_in > 0) {
+ return Z_BUF_ERROR; // should never happen
+ } else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
+ // an error happened
+ CompressErrorInit();
+ return err;
+ } else if (comp_stream_.avail_out == 0) { // not enough space
+ err = Z_BUF_ERROR;
+ }
+
+ assert(err == Z_OK || err == Z_STREAM_END || err == Z_BUF_ERROR);
+ if (err == Z_STREAM_END)
+ err = Z_OK;
+
+ // update the crc and other metadata
+ compressed_size = comp_stream_.total_out - compressed_size; // delta
+ *destLen = compressed_size;
+
+ return err;
+}
+
+int ZLib::CompressChunkOrAll(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong sourceLen,
+ int flush_mode) { // Z_FULL_FLUSH or Z_FINISH
+ const int ret =
+ CompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
+ if (ret == Z_BUF_ERROR)
+ CompressErrorInit();
+ return ret;
+}
+
+// This routine only initializes the compression stream once. Thereafter, it
+// just does a deflateReset on the stream, which should be faster.
+int ZLib::Compress(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong sourceLen) {
+ int err;
+ if ( (err=CompressChunkOrAll(dest, destLen, source, sourceLen,
+ Z_FINISH)) != Z_OK )
+ return err;
+ Reset(); // reset for next call to Compress
+
+ return Z_OK;
+}
+
+
+// --------- UNCOMPRESS MODE
+
+int ZLib::InflateInit() {
+ return inflateInit2(&uncomp_stream_, MAX_WBITS);
+}
+
+// Initialization method to be called if we hit an error while
+// uncompressing. On hitting an error, call this method before
+// returning the error.
+void ZLib::UncompressErrorInit() {
+ inflateEnd(&uncomp_stream_);
+ uncomp_init_ = false;
+ Reset();
+}
+
+int ZLib::UncompressInit(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong *sourceLen) {
+ int err;
+
+ uncomp_stream_.next_in = (Bytef*)source;
+ uncomp_stream_.avail_in = (uInt)*sourceLen;
+ // Check for source > 64K on 16-bit machine:
+ if ((uLong)uncomp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;
+
+ uncomp_stream_.next_out = dest;
+ uncomp_stream_.avail_out = (uInt)*destLen;
+ if ((uLong)uncomp_stream_.avail_out != *destLen) return Z_BUF_ERROR;
+
+ if ( !first_chunk_ ) // only need to set up stream the first time through
+ return Z_OK;
+
+ if (uncomp_init_) { // we've already initted it
+ err = inflateReset(&uncomp_stream_);
+ if (err != Z_OK) {
+ LOG(WARNING)
+ << "ERROR: Can't reset uncompress object; creating a new one";
+ UncompressErrorInit();
+ }
+ }
+ if (!uncomp_init_) {
+ uncomp_stream_.zalloc = (alloc_func)0;
+ uncomp_stream_.zfree = (free_func)0;
+ uncomp_stream_.opaque = (voidpf)0;
+ err = InflateInit();
+ if (err != Z_OK) return err;
+ uncomp_init_ = true;
+ }
+ return Z_OK;
+}
+
+// If you compressed your data a chunk at a time, with CompressChunk,
+// you can uncompress it a chunk at a time with UncompressChunk.
+// Only difference bewteen chunked and unchunked uncompression
+// is the flush mode we use: Z_SYNC_FLUSH (chunked) or Z_FINISH (unchunked).
+int ZLib::UncompressAtMostOrAll(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong *sourceLen,
+ int flush_mode) { // Z_SYNC_FLUSH or Z_FINISH
+ int err = Z_OK;
+
+ if ( (err=UncompressInit(dest, destLen, source, sourceLen)) != Z_OK ) {
+ LOG(WARNING) << "UncompressInit: Error: " << err << " SourceLen: "
+ << *sourceLen;
+ return err;
+ }
+
+ // This is used to figure out how many output bytes we wrote *this chunk*:
+ const uLong old_total_out = uncomp_stream_.total_out;
+
+ // This is used to figure out how many input bytes we read *this chunk*:
+ const uLong old_total_in = uncomp_stream_.total_in;
+
+ // Some setup happens only for the first chunk we compress in a run
+ if ( first_chunk_ ) {
+ first_chunk_ = false; // so we don't do this again
+
+ // For the first chunk *only* (to avoid infinite troubles), we let
+ // there be no actual data to uncompress. This sometimes triggers
+ // when the input is only the gzip header, say.
+ if ( *sourceLen == 0 ) {
+ *destLen = 0;
+ return Z_OK;
+ }
+ }
+
+ // We'll uncompress as much as we can. If we end OK great, otherwise
+ // if we get an error that seems to be the gzip footer, we store the
+ // gzip footer and return OK, otherwise we return the error.
+
+ // flush_mode is Z_SYNC_FLUSH for chunked mode, Z_FINISH for all mode.
+ err = inflate(&uncomp_stream_, flush_mode);
+
+ // Figure out how many bytes of the input zlib slurped up:
+ const uLong bytes_read = uncomp_stream_.total_in - old_total_in;
+ CHECK_LE(source + bytes_read, source + *sourceLen);
+ *sourceLen = uncomp_stream_.avail_in;
+
+ if ((err == Z_STREAM_END || err == Z_OK) // everything went ok
+ && uncomp_stream_.avail_in == 0) { // and we read it all
+ ;
+ } else if (err == Z_STREAM_END && uncomp_stream_.avail_in > 0) {
+ LOG(WARNING)
+ << "UncompressChunkOrAll: Received some extra data, bytes total: "
+ << uncomp_stream_.avail_in << " bytes: "
+ << string(reinterpret_cast<const char *>(uncomp_stream_.next_in),
+ min(int(uncomp_stream_.avail_in), 20));
+ UncompressErrorInit();
+ return Z_DATA_ERROR; // what's the extra data for?
+ } else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
+ // an error happened
+ LOG(WARNING) << "UncompressChunkOrAll: Error: " << err
+ << " avail_out: " << uncomp_stream_.avail_out;
+ UncompressErrorInit();
+ return err;
+ } else if (uncomp_stream_.avail_out == 0) {
+ err = Z_BUF_ERROR;
+ }
+
+ assert(err == Z_OK || err == Z_BUF_ERROR || err == Z_STREAM_END);
+ if (err == Z_STREAM_END)
+ err = Z_OK;
+
+ *destLen = uncomp_stream_.total_out - old_total_out; // size for this call
+
+ return err;
+}
+
+int ZLib::UncompressChunkOrAll(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong sourceLen,
+ int flush_mode) { // Z_SYNC_FLUSH or Z_FINISH
+ const int ret =
+ UncompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
+ if (ret == Z_BUF_ERROR)
+ UncompressErrorInit();
+ return ret;
+}
+
+int ZLib::UncompressAtMost(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong *sourceLen) {
+ return UncompressAtMostOrAll(dest, destLen, source, sourceLen, Z_SYNC_FLUSH);
+}
+
+// We make sure we've uncompressed everything, that is, the current
+// uncompress stream is at a compressed-buffer-EOF boundary. In gzip
+// mode, we also check the gzip footer to make sure we pass the gzip
+// consistency checks. We RETURN true iff both types of checks pass.
+bool ZLib::UncompressChunkDone() {
+ assert(!first_chunk_ && uncomp_init_);
+ // Make sure we're at the end-of-compressed-data point. This means
+ // if we call inflate with Z_FINISH we won't consume any input or
+ // write any output
+ Bytef dummyin, dummyout;
+ uLongf dummylen = 0;
+ if ( UncompressChunkOrAll(&dummyout, &dummylen, &dummyin, 0, Z_FINISH)
+ != Z_OK ) {
+ return false;
+ }
+
+ // Make sure that when we exit, we can start a new round of chunks later
+ Reset();
+
+ return true;
+}
+
+// Uncompresses the source buffer into the destination buffer.
+// The destination buffer must be long enough to hold the entire
+// decompressed contents.
+//
+// We only initialize the uncomp_stream once. Thereafter, we use
+// inflateReset, which should be faster.
+//
+// Returns Z_OK on success, otherwise, it returns a zlib error code.
+int ZLib::Uncompress(Bytef *dest, uLongf *destLen,
+ const Bytef *source, uLong sourceLen) {
+ int err;
+ if ( (err=UncompressChunkOrAll(dest, destLen, source, sourceLen,
+ Z_FINISH)) != Z_OK ) {
+ Reset(); // let us try to compress again
+ return err;
+ }
+ if ( !UncompressChunkDone() ) // calls Reset()
+ return Z_DATA_ERROR;
+ return Z_OK; // stream_end is ok
+}
+
+#endif // HAVE_LIBZ
+
+} // namespace snappy