diff options
author | Parménides GV <parmegv@sdf.org> | 2014-06-11 11:56:59 +0200 |
---|---|---|
committer | Parménides GV <parmegv@sdf.org> | 2014-06-11 19:50:54 +0200 |
commit | 3e121542d8b7ab5201c47bbd3ba5611a23c54759 (patch) | |
tree | a6035639e7baa88dd122d0d4e85791726606389a /app/openssl/crypto/modes/asm/ghash-x86.pl | |
parent | ac69881af1b7bfcdd185989f3e434556b1d62fed (diff) |
Correctly connects to millipede.
Location keyword on android.cfg isn't supported, EIP corresponding code
has been commented out. I think we should support it in ics-openvpn, so
that we can show the location instead of the server name.
I've updated all opensssl, openvpn, etc. subprojects from rev 813 of
ics-openvpn, and jni too.
Diffstat (limited to 'app/openssl/crypto/modes/asm/ghash-x86.pl')
-rw-r--r-- | app/openssl/crypto/modes/asm/ghash-x86.pl | 1342 |
1 files changed, 1342 insertions, 0 deletions
diff --git a/app/openssl/crypto/modes/asm/ghash-x86.pl b/app/openssl/crypto/modes/asm/ghash-x86.pl new file mode 100644 index 00000000..2426cd0c --- /dev/null +++ b/app/openssl/crypto/modes/asm/ghash-x86.pl @@ -0,0 +1,1342 @@ +#!/usr/bin/env perl +# +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# March, May, June 2010 +# +# The module implements "4-bit" GCM GHASH function and underlying +# single multiplication operation in GF(2^128). "4-bit" means that it +# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two +# code paths: vanilla x86 and vanilla MMX. Former will be executed on +# 486 and Pentium, latter on all others. MMX GHASH features so called +# "528B" variant of "4-bit" method utilizing additional 256+16 bytes +# of per-key storage [+512 bytes shared table]. Performance results +# are for streamed GHASH subroutine and are expressed in cycles per +# processed byte, less is better: +# +# gcc 2.95.3(*) MMX assembler x86 assembler +# +# Pentium 105/111(**) - 50 +# PIII 68 /75 12.2 24 +# P4 125/125 17.8 84(***) +# Opteron 66 /70 10.1 30 +# Core2 54 /67 8.4 18 +# +# (*) gcc 3.4.x was observed to generate few percent slower code, +# which is one of reasons why 2.95.3 results were chosen, +# another reason is lack of 3.4.x results for older CPUs; +# comparison with MMX results is not completely fair, because C +# results are for vanilla "256B" implementation, while +# assembler results are for "528B";-) +# (**) second number is result for code compiled with -fPIC flag, +# which is actually more relevant, because assembler code is +# position-independent; +# (***) see comment in non-MMX routine for further details; +# +# To summarize, it's >2-5 times faster than gcc-generated code. To +# anchor it to something else SHA1 assembler processes one byte in +# 11-13 cycles on contemporary x86 cores. As for choice of MMX in +# particular, see comment at the end of the file... + +# May 2010 +# +# Add PCLMULQDQ version performing at 2.10 cycles per processed byte. +# The question is how close is it to theoretical limit? The pclmulqdq +# instruction latency appears to be 14 cycles and there can't be more +# than 2 of them executing at any given time. This means that single +# Karatsuba multiplication would take 28 cycles *plus* few cycles for +# pre- and post-processing. Then multiplication has to be followed by +# modulo-reduction. Given that aggregated reduction method [see +# "Carry-less Multiplication and Its Usage for Computing the GCM Mode" +# white paper by Intel] allows you to perform reduction only once in +# a while we can assume that asymptotic performance can be estimated +# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction +# and Naggr is the aggregation factor. +# +# Before we proceed to this implementation let's have closer look at +# the best-performing code suggested by Intel in their white paper. +# By tracing inter-register dependencies Tmod is estimated as ~19 +# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per +# processed byte. As implied, this is quite optimistic estimate, +# because it does not account for Karatsuba pre- and post-processing, +# which for a single multiplication is ~5 cycles. Unfortunately Intel +# does not provide performance data for GHASH alone. But benchmarking +# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt +# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that +# the result accounts even for pre-computing of degrees of the hash +# key H, but its portion is negligible at 16KB buffer size. +# +# Moving on to the implementation in question. Tmod is estimated as +# ~13 cycles and Naggr is 2, giving asymptotic performance of ... +# 2.16. How is it possible that measured performance is better than +# optimistic theoretical estimate? There is one thing Intel failed +# to recognize. By serializing GHASH with CTR in same subroutine +# former's performance is really limited to above (Tmul + Tmod/Naggr) +# equation. But if GHASH procedure is detached, the modulo-reduction +# can be interleaved with Naggr-1 multiplications at instruction level +# and under ideal conditions even disappear from the equation. So that +# optimistic theoretical estimate for this implementation is ... +# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic, +# at least for such small Naggr. I'd argue that (28+Tproc/Naggr), +# where Tproc is time required for Karatsuba pre- and post-processing, +# is more realistic estimate. In this case it gives ... 1.91 cycles. +# Or in other words, depending on how well we can interleave reduction +# and one of the two multiplications the performance should be betwen +# 1.91 and 2.16. As already mentioned, this implementation processes +# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart +# - in 2.02. x86_64 performance is better, because larger register +# bank allows to interleave reduction and multiplication better. +# +# Does it make sense to increase Naggr? To start with it's virtually +# impossible in 32-bit mode, because of limited register bank +# capacity. Otherwise improvement has to be weighed agiainst slower +# setup, as well as code size and complexity increase. As even +# optimistic estimate doesn't promise 30% performance improvement, +# there are currently no plans to increase Naggr. +# +# Special thanks to David Woodhouse <dwmw2@infradead.org> for +# providing access to a Westmere-based system on behalf of Intel +# Open Source Technology Centre. + +# January 2010 +# +# Tweaked to optimize transitions between integer and FP operations +# on same XMM register, PCLMULQDQ subroutine was measured to process +# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere. +# The minor regression on Westmere is outweighed by ~15% improvement +# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in +# similar manner resulted in almost 20% degradation on Sandy Bridge, +# where original 64-bit code processes one byte in 1.95 cycles. + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +push(@INC,"${dir}","${dir}../../perlasm"); +require "x86asm.pl"; + +&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386"); + +$sse2=0; +for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } + +($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx"); +$inp = "edi"; +$Htbl = "esi"; + +$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse + # than unrolled, which has to be weighted against + # 2.5x x86-specific code size reduction. + +sub x86_loop { + my $off = shift; + my $rem = "eax"; + + &mov ($Zhh,&DWP(4,$Htbl,$Zll)); + &mov ($Zhl,&DWP(0,$Htbl,$Zll)); + &mov ($Zlh,&DWP(12,$Htbl,$Zll)); + &mov ($Zll,&DWP(8,$Htbl,$Zll)); + &xor ($rem,$rem); # avoid partial register stalls on PIII + + # shrd practically kills P4, 2.5x deterioration, but P4 has + # MMX code-path to execute. shrd runs tad faster [than twice + # the shifts, move's and or's] on pre-MMX Pentium (as well as + # PIII and Core2), *but* minimizes code size, spares register + # and thus allows to fold the loop... + if (!$unroll) { + my $cnt = $inp; + &mov ($cnt,15); + &jmp (&label("x86_loop")); + &set_label("x86_loop",16); + for($i=1;$i<=2;$i++) { + &mov (&LB($rem),&LB($Zll)); + &shrd ($Zll,$Zlh,4); + &and (&LB($rem),0xf); + &shrd ($Zlh,$Zhl,4); + &shrd ($Zhl,$Zhh,4); + &shr ($Zhh,4); + &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); + + &mov (&LB($rem),&BP($off,"esp",$cnt)); + if ($i&1) { + &and (&LB($rem),0xf0); + } else { + &shl (&LB($rem),4); + } + + &xor ($Zll,&DWP(8,$Htbl,$rem)); + &xor ($Zlh,&DWP(12,$Htbl,$rem)); + &xor ($Zhl,&DWP(0,$Htbl,$rem)); + &xor ($Zhh,&DWP(4,$Htbl,$rem)); + + if ($i&1) { + &dec ($cnt); + &js (&label("x86_break")); + } else { + &jmp (&label("x86_loop")); + } + } + &set_label("x86_break",16); + } else { + for($i=1;$i<32;$i++) { + &comment($i); + &mov (&LB($rem),&LB($Zll)); + &shrd ($Zll,$Zlh,4); + &and (&LB($rem),0xf); + &shrd ($Zlh,$Zhl,4); + &shrd ($Zhl,$Zhh,4); + &shr ($Zhh,4); + &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); + + if ($i&1) { + &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); + &and (&LB($rem),0xf0); + } else { + &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); + &shl (&LB($rem),4); + } + + &xor ($Zll,&DWP(8,$Htbl,$rem)); + &xor ($Zlh,&DWP(12,$Htbl,$rem)); + &xor ($Zhl,&DWP(0,$Htbl,$rem)); + &xor ($Zhh,&DWP(4,$Htbl,$rem)); + } + } + &bswap ($Zll); + &bswap ($Zlh); + &bswap ($Zhl); + if (!$x86only) { + &bswap ($Zhh); + } else { + &mov ("eax",$Zhh); + &bswap ("eax"); + &mov ($Zhh,"eax"); + } +} + +if ($unroll) { + &function_begin_B("_x86_gmult_4bit_inner"); + &x86_loop(4); + &ret (); + &function_end_B("_x86_gmult_4bit_inner"); +} + +sub deposit_rem_4bit { + my $bias = shift; + + &mov (&DWP($bias+0, "esp"),0x0000<<16); + &mov (&DWP($bias+4, "esp"),0x1C20<<16); + &mov (&DWP($bias+8, "esp"),0x3840<<16); + &mov (&DWP($bias+12,"esp"),0x2460<<16); + &mov (&DWP($bias+16,"esp"),0x7080<<16); + &mov (&DWP($bias+20,"esp"),0x6CA0<<16); + &mov (&DWP($bias+24,"esp"),0x48C0<<16); + &mov (&DWP($bias+28,"esp"),0x54E0<<16); + &mov (&DWP($bias+32,"esp"),0xE100<<16); + &mov (&DWP($bias+36,"esp"),0xFD20<<16); + &mov (&DWP($bias+40,"esp"),0xD940<<16); + &mov (&DWP($bias+44,"esp"),0xC560<<16); + &mov (&DWP($bias+48,"esp"),0x9180<<16); + &mov (&DWP($bias+52,"esp"),0x8DA0<<16); + &mov (&DWP($bias+56,"esp"),0xA9C0<<16); + &mov (&DWP($bias+60,"esp"),0xB5E0<<16); +} + +$suffix = $x86only ? "" : "_x86"; + +&function_begin("gcm_gmult_4bit".$suffix); + &stack_push(16+4+1); # +1 for stack alignment + &mov ($inp,&wparam(0)); # load Xi + &mov ($Htbl,&wparam(1)); # load Htable + + &mov ($Zhh,&DWP(0,$inp)); # load Xi[16] + &mov ($Zhl,&DWP(4,$inp)); + &mov ($Zlh,&DWP(8,$inp)); + &mov ($Zll,&DWP(12,$inp)); + + &deposit_rem_4bit(16); + + &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack + &mov (&DWP(4,"esp"),$Zhl); + &mov (&DWP(8,"esp"),$Zlh); + &mov (&DWP(12,"esp"),$Zll); + &shr ($Zll,20); + &and ($Zll,0xf0); + + if ($unroll) { + &call ("_x86_gmult_4bit_inner"); + } else { + &x86_loop(0); + &mov ($inp,&wparam(0)); + } + + &mov (&DWP(12,$inp),$Zll); + &mov (&DWP(8,$inp),$Zlh); + &mov (&DWP(4,$inp),$Zhl); + &mov (&DWP(0,$inp),$Zhh); + &stack_pop(16+4+1); +&function_end("gcm_gmult_4bit".$suffix); + +&function_begin("gcm_ghash_4bit".$suffix); + &stack_push(16+4+1); # +1 for 64-bit alignment + &mov ($Zll,&wparam(0)); # load Xi + &mov ($Htbl,&wparam(1)); # load Htable + &mov ($inp,&wparam(2)); # load in + &mov ("ecx",&wparam(3)); # load len + &add ("ecx",$inp); + &mov (&wparam(3),"ecx"); + + &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16] + &mov ($Zhl,&DWP(4,$Zll)); + &mov ($Zlh,&DWP(8,$Zll)); + &mov ($Zll,&DWP(12,$Zll)); + + &deposit_rem_4bit(16); + + &set_label("x86_outer_loop",16); + &xor ($Zll,&DWP(12,$inp)); # xor with input + &xor ($Zlh,&DWP(8,$inp)); + &xor ($Zhl,&DWP(4,$inp)); + &xor ($Zhh,&DWP(0,$inp)); + &mov (&DWP(12,"esp"),$Zll); # dump it on stack + &mov (&DWP(8,"esp"),$Zlh); + &mov (&DWP(4,"esp"),$Zhl); + &mov (&DWP(0,"esp"),$Zhh); + + &shr ($Zll,20); + &and ($Zll,0xf0); + + if ($unroll) { + &call ("_x86_gmult_4bit_inner"); + } else { + &x86_loop(0); + &mov ($inp,&wparam(2)); + } + &lea ($inp,&DWP(16,$inp)); + &cmp ($inp,&wparam(3)); + &mov (&wparam(2),$inp) if (!$unroll); + &jb (&label("x86_outer_loop")); + + &mov ($inp,&wparam(0)); # load Xi + &mov (&DWP(12,$inp),$Zll); + &mov (&DWP(8,$inp),$Zlh); + &mov (&DWP(4,$inp),$Zhl); + &mov (&DWP(0,$inp),$Zhh); + &stack_pop(16+4+1); +&function_end("gcm_ghash_4bit".$suffix); + +if (!$x86only) {{{ + +&static_label("rem_4bit"); + +if (!$sse2) {{ # pure-MMX "May" version... + +$S=12; # shift factor for rem_4bit + +&function_begin_B("_mmx_gmult_4bit_inner"); +# MMX version performs 3.5 times better on P4 (see comment in non-MMX +# routine for further details), 100% better on Opteron, ~70% better +# on Core2 and PIII... In other words effort is considered to be well +# spent... Since initial release the loop was unrolled in order to +# "liberate" register previously used as loop counter. Instead it's +# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'. +# The path involves move of Z.lo from MMX to integer register, +# effective address calculation and finally merge of value to Z.hi. +# Reference to rem_4bit is scheduled so late that I had to >>4 +# rem_4bit elements. This resulted in 20-45% procent improvement +# on contemporary µ-archs. +{ + my $cnt; + my $rem_4bit = "eax"; + my @rem = ($Zhh,$Zll); + my $nhi = $Zhl; + my $nlo = $Zlh; + + my ($Zlo,$Zhi) = ("mm0","mm1"); + my $tmp = "mm2"; + + &xor ($nlo,$nlo); # avoid partial register stalls on PIII + &mov ($nhi,$Zll); + &mov (&LB($nlo),&LB($nhi)); + &shl (&LB($nlo),4); + &and ($nhi,0xf0); + &movq ($Zlo,&QWP(8,$Htbl,$nlo)); + &movq ($Zhi,&QWP(0,$Htbl,$nlo)); + &movd ($rem[0],$Zlo); + + for ($cnt=28;$cnt>=-2;$cnt--) { + my $odd = $cnt&1; + my $nix = $odd ? $nlo : $nhi; + + &shl (&LB($nlo),4) if ($odd); + &psrlq ($Zlo,4); + &movq ($tmp,$Zhi); + &psrlq ($Zhi,4); + &pxor ($Zlo,&QWP(8,$Htbl,$nix)); + &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0); + &psllq ($tmp,60); + &and ($nhi,0xf0) if ($odd); + &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28); + &and ($rem[0],0xf); + &pxor ($Zhi,&QWP(0,$Htbl,$nix)); + &mov ($nhi,$nlo) if (!$odd && $cnt>=0); + &movd ($rem[1],$Zlo); + &pxor ($Zlo,$tmp); + + push (@rem,shift(@rem)); # "rotate" registers + } + + &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem] + + &psrlq ($Zlo,32); # lower part of Zlo is already there + &movd ($Zhl,$Zhi); + &psrlq ($Zhi,32); + &movd ($Zlh,$Zlo); + &movd ($Zhh,$Zhi); + &shl ($inp,4); # compensate for rem_4bit[i] being >>4 + + &bswap ($Zll); + &bswap ($Zhl); + &bswap ($Zlh); + &xor ($Zhh,$inp); + &bswap ($Zhh); + + &ret (); +} +&function_end_B("_mmx_gmult_4bit_inner"); + +&function_begin("gcm_gmult_4bit_mmx"); + &mov ($inp,&wparam(0)); # load Xi + &mov ($Htbl,&wparam(1)); # load Htable + + &call (&label("pic_point")); + &set_label("pic_point"); + &blindpop("eax"); + &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); + + &movz ($Zll,&BP(15,$inp)); + + &call ("_mmx_gmult_4bit_inner"); + + &mov ($inp,&wparam(0)); # load Xi + &emms (); + &mov (&DWP(12,$inp),$Zll); + &mov (&DWP(4,$inp),$Zhl); + &mov (&DWP(8,$inp),$Zlh); + &mov (&DWP(0,$inp),$Zhh); +&function_end("gcm_gmult_4bit_mmx"); + +# Streamed version performs 20% better on P4, 7% on Opteron, +# 10% on Core2 and PIII... +&function_begin("gcm_ghash_4bit_mmx"); + &mov ($Zhh,&wparam(0)); # load Xi + &mov ($Htbl,&wparam(1)); # load Htable + &mov ($inp,&wparam(2)); # load in + &mov ($Zlh,&wparam(3)); # load len + + &call (&label("pic_point")); + &set_label("pic_point"); + &blindpop("eax"); + &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); + + &add ($Zlh,$inp); + &mov (&wparam(3),$Zlh); # len to point at the end of input + &stack_push(4+1); # +1 for stack alignment + + &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16] + &mov ($Zhl,&DWP(4,$Zhh)); + &mov ($Zlh,&DWP(8,$Zhh)); + &mov ($Zhh,&DWP(0,$Zhh)); + &jmp (&label("mmx_outer_loop")); + + &set_label("mmx_outer_loop",16); + &xor ($Zll,&DWP(12,$inp)); + &xor ($Zhl,&DWP(4,$inp)); + &xor ($Zlh,&DWP(8,$inp)); + &xor ($Zhh,&DWP(0,$inp)); + &mov (&wparam(2),$inp); + &mov (&DWP(12,"esp"),$Zll); + &mov (&DWP(4,"esp"),$Zhl); + &mov (&DWP(8,"esp"),$Zlh); + &mov (&DWP(0,"esp"),$Zhh); + + &mov ($inp,"esp"); + &shr ($Zll,24); + + &call ("_mmx_gmult_4bit_inner"); + + &mov ($inp,&wparam(2)); + &lea ($inp,&DWP(16,$inp)); + &cmp ($inp,&wparam(3)); + &jb (&label("mmx_outer_loop")); + + &mov ($inp,&wparam(0)); # load Xi + &emms (); + &mov (&DWP(12,$inp),$Zll); + &mov (&DWP(4,$inp),$Zhl); + &mov (&DWP(8,$inp),$Zlh); + &mov (&DWP(0,$inp),$Zhh); + + &stack_pop(4+1); +&function_end("gcm_ghash_4bit_mmx"); + +}} else {{ # "June" MMX version... + # ... has slower "April" gcm_gmult_4bit_mmx with folded + # loop. This is done to conserve code size... +$S=16; # shift factor for rem_4bit + +sub mmx_loop() { +# MMX version performs 2.8 times better on P4 (see comment in non-MMX +# routine for further details), 40% better on Opteron and Core2, 50% +# better on PIII... In other words effort is considered to be well +# spent... + my $inp = shift; + my $rem_4bit = shift; + my $cnt = $Zhh; + my $nhi = $Zhl; + my $nlo = $Zlh; + my $rem = $Zll; + + my ($Zlo,$Zhi) = ("mm0","mm1"); + my $tmp = "mm2"; + + &xor ($nlo,$nlo); # avoid partial register stalls on PIII + &mov ($nhi,$Zll); + &mov (&LB($nlo),&LB($nhi)); + &mov ($cnt,14); + &shl (&LB($nlo),4); + &and ($nhi,0xf0); + &movq ($Zlo,&QWP(8,$Htbl,$nlo)); + &movq ($Zhi,&QWP(0,$Htbl,$nlo)); + &movd ($rem,$Zlo); + &jmp (&label("mmx_loop")); + + &set_label("mmx_loop",16); + &psrlq ($Zlo,4); + &and ($rem,0xf); + &movq ($tmp,$Zhi); + &psrlq ($Zhi,4); + &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); + &mov (&LB($nlo),&BP(0,$inp,$cnt)); + &psllq ($tmp,60); + &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); + &dec ($cnt); + &movd ($rem,$Zlo); + &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); + &mov ($nhi,$nlo); + &pxor ($Zlo,$tmp); + &js (&label("mmx_break")); + + &shl (&LB($nlo),4); + &and ($rem,0xf); + &psrlq ($Zlo,4); + &and ($nhi,0xf0); + &movq ($tmp,$Zhi); + &psrlq ($Zhi,4); + &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); + &psllq ($tmp,60); + &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); + &movd ($rem,$Zlo); + &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); + &pxor ($Zlo,$tmp); + &jmp (&label("mmx_loop")); + + &set_label("mmx_break",16); + &shl (&LB($nlo),4); + &and ($rem,0xf); + &psrlq ($Zlo,4); + &and ($nhi,0xf0); + &movq ($tmp,$Zhi); + &psrlq ($Zhi,4); + &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); + &psllq ($tmp,60); + &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); + &movd ($rem,$Zlo); + &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); + &pxor ($Zlo,$tmp); + + &psrlq ($Zlo,4); + &and ($rem,0xf); + &movq ($tmp,$Zhi); + &psrlq ($Zhi,4); + &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); + &psllq ($tmp,60); + &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); + &movd ($rem,$Zlo); + &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); + &pxor ($Zlo,$tmp); + + &psrlq ($Zlo,32); # lower part of Zlo is already there + &movd ($Zhl,$Zhi); + &psrlq ($Zhi,32); + &movd ($Zlh,$Zlo); + &movd ($Zhh,$Zhi); + + &bswap ($Zll); + &bswap ($Zhl); + &bswap ($Zlh); + &bswap ($Zhh); +} + +&function_begin("gcm_gmult_4bit_mmx"); + &mov ($inp,&wparam(0)); # load Xi + &mov ($Htbl,&wparam(1)); # load Htable + + &call (&label("pic_point")); + &set_label("pic_point"); + &blindpop("eax"); + &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); + + &movz ($Zll,&BP(15,$inp)); + + &mmx_loop($inp,"eax"); + + &emms (); + &mov (&DWP(12,$inp),$Zll); + &mov (&DWP(4,$inp),$Zhl); + &mov (&DWP(8,$inp),$Zlh); + &mov (&DWP(0,$inp),$Zhh); +&function_end("gcm_gmult_4bit_mmx"); + +###################################################################### +# Below subroutine is "528B" variant of "4-bit" GCM GHASH function +# (see gcm128.c for details). It provides further 20-40% performance +# improvement over above mentioned "May" version. + +&static_label("rem_8bit"); + +&function_begin("gcm_ghash_4bit_mmx"); +{ my ($Zlo,$Zhi) = ("mm7","mm6"); + my $rem_8bit = "esi"; + my $Htbl = "ebx"; + + # parameter block + &mov ("eax",&wparam(0)); # Xi + &mov ("ebx",&wparam(1)); # Htable + &mov ("ecx",&wparam(2)); # inp + &mov ("edx",&wparam(3)); # len + &mov ("ebp","esp"); # original %esp + &call (&label("pic_point")); + &set_label ("pic_point"); + &blindpop ($rem_8bit); + &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit)); + + &sub ("esp",512+16+16); # allocate stack frame... + &and ("esp",-64); # ...and align it + &sub ("esp",16); # place for (u8)(H[]<<4) + + &add ("edx","ecx"); # pointer to the end of input + &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi + &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len + &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp + + { my @lo = ("mm0","mm1","mm2"); + my @hi = ("mm3","mm4","mm5"); + my @tmp = ("mm6","mm7"); + my ($off1,$off2,$i) = (0,0,); + + &add ($Htbl,128); # optimize for size + &lea ("edi",&DWP(16+128,"esp")); + &lea ("ebp",&DWP(16+256+128,"esp")); + + # decompose Htable (low and high parts are kept separately), + # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack... + for ($i=0;$i<18;$i++) { + + &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16); + &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16); + &psllq ($tmp[1],60) if ($i>1); + &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16); + &por ($lo[2],$tmp[1]) if ($i>1); + &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17); + &psrlq ($lo[1],4) if ($i>0 && $i<17); + &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17); + &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17); + &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1); + &psrlq ($hi[1],4) if ($i>0 && $i<17); + &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1); + &shl ("edx",4) if ($i<16); + &mov (&BP($i,"esp"),&LB("edx")) if ($i<16); + + unshift (@lo,pop(@lo)); # "rotate" registers + unshift (@hi,pop(@hi)); + unshift (@tmp,pop(@tmp)); + $off1 += 8 if ($i>0); + $off2 += 8 if ($i>1); + } + } + + &movq ($Zhi,&QWP(0,"eax")); + &mov ("ebx",&DWP(8,"eax")); + &mov ("edx",&DWP(12,"eax")); # load Xi + +&set_label("outer",16); + { my $nlo = "eax"; + my $dat = "edx"; + my @nhi = ("edi","ebp"); + my @rem = ("ebx","ecx"); + my @red = ("mm0","mm1","mm2"); + my $tmp = "mm3"; + + &xor ($dat,&DWP(12,"ecx")); # merge input data + &xor ("ebx",&DWP(8,"ecx")); + &pxor ($Zhi,&QWP(0,"ecx")); + &lea ("ecx",&DWP(16,"ecx")); # inp+=16 + #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi + &mov (&DWP(528+8,"esp"),"ebx"); + &movq (&QWP(528+0,"esp"),$Zhi); + &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp + + &xor ($nlo,$nlo); + &rol ($dat,8); + &mov (&LB($nlo),&LB($dat)); + &mov ($nhi[1],$nlo); + &and (&LB($nlo),0x0f); + &shr ($nhi[1],4); + &pxor ($red[0],$red[0]); + &rol ($dat,8); # next byte + &pxor ($red[1],$red[1]); + &pxor ($red[2],$red[2]); + + # Just like in "May" verson modulo-schedule for critical path in + # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor' + # is scheduled so late that rem_8bit[] has to be shifted *right* + # by 16, which is why last argument to pinsrw is 2, which + # corresponds to <<32=<<48>>16... + for ($j=11,$i=0;$i<15;$i++) { + + if ($i>0) { + &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] + &rol ($dat,8); # next byte + &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); + + &pxor ($Zlo,$tmp); + &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); + &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) + } else { + &movq ($Zlo,&QWP(16,"esp",$nlo,8)); + &movq ($Zhi,&QWP(16+128,"esp",$nlo,8)); + } + + &mov (&LB($nlo),&LB($dat)); + &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0); + + &movd ($rem[0],$Zlo); + &movz ($rem[1],&LB($rem[1])) if ($i>0); + &psrlq ($Zlo,8); # Z>>=8 + + &movq ($tmp,$Zhi); + &mov ($nhi[0],$nlo); + &psrlq ($Zhi,8); + + &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4 + &and (&LB($nlo),0x0f); + &psllq ($tmp,56); + + &pxor ($Zhi,$red[1]) if ($i>1); + &shr ($nhi[0],4); + &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0); + + unshift (@red,pop(@red)); # "rotate" registers + unshift (@rem,pop(@rem)); + unshift (@nhi,pop(@nhi)); + } + + &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] + &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); + &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) + + &pxor ($Zlo,$tmp); + &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); + &movz ($rem[1],&LB($rem[1])); + + &pxor ($red[2],$red[2]); # clear 2nd word + &psllq ($red[1],4); + + &movd ($rem[0],$Zlo); + &psrlq ($Zlo,4); # Z>>=4 + + &movq ($tmp,$Zhi); + &psrlq ($Zhi,4); + &shl ($rem[0],4); # rem<<4 + + &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi] + &psllq ($tmp,60); + &movz ($rem[0],&LB($rem[0])); + + &pxor ($Zlo,$tmp); + &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8)); + + &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2); + &pxor ($Zhi,$red[1]); + + &movd ($dat,$Zlo); + &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48 + + &psllq ($red[0],12); # correct by <<16>>4 + &pxor ($Zhi,$red[0]); + &psrlq ($Zlo,32); + &pxor ($Zhi,$red[2]); + + &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp + &movd ("ebx",$Zlo); + &movq ($tmp,$Zhi); # 01234567 + &psllw ($Zhi,8); # 1.3.5.7. + &psrlw ($tmp,8); # .0.2.4.6 + &por ($Zhi,$tmp); # 10325476 + &bswap ($dat); + &pshufw ($Zhi,$Zhi,0b00011011); # 76543210 + &bswap ("ebx"); + + &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done? + &jne (&label("outer")); + } + + &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi + &mov (&DWP(12,"eax"),"edx"); + &mov (&DWP(8,"eax"),"ebx"); + &movq (&QWP(0,"eax"),$Zhi); + + &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp + &emms (); +} +&function_end("gcm_ghash_4bit_mmx"); +}} + +if ($sse2) {{ +###################################################################### +# PCLMULQDQ version. + +$Xip="eax"; +$Htbl="edx"; +$const="ecx"; +$inp="esi"; +$len="ebx"; + +($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2"; +($T1,$T2,$T3)=("xmm3","xmm4","xmm5"); +($Xn,$Xhn)=("xmm6","xmm7"); + +&static_label("bswap"); + +sub clmul64x64_T2 { # minimal "register" pressure +my ($Xhi,$Xi,$Hkey)=@_; + + &movdqa ($Xhi,$Xi); # + &pshufd ($T1,$Xi,0b01001110); + &pshufd ($T2,$Hkey,0b01001110); + &pxor ($T1,$Xi); # + &pxor ($T2,$Hkey); + + &pclmulqdq ($Xi,$Hkey,0x00); ####### + &pclmulqdq ($Xhi,$Hkey,0x11); ####### + &pclmulqdq ($T1,$T2,0x00); ####### + &xorps ($T1,$Xi); # + &xorps ($T1,$Xhi); # + + &movdqa ($T2,$T1); # + &psrldq ($T1,8); + &pslldq ($T2,8); # + &pxor ($Xhi,$T1); + &pxor ($Xi,$T2); # +} + +sub clmul64x64_T3 { +# Even though this subroutine offers visually better ILP, it +# was empirically found to be a tad slower than above version. +# At least in gcm_ghash_clmul context. But it's just as well, +# because loop modulo-scheduling is possible only thanks to +# minimized "register" pressure... +my ($Xhi,$Xi,$Hkey)=@_; + + &movdqa ($T1,$Xi); # + &movdqa ($Xhi,$Xi); + &pclmulqdq ($Xi,$Hkey,0x00); ####### + &pclmulqdq ($Xhi,$Hkey,0x11); ####### + &pshufd ($T2,$T1,0b01001110); # + &pshufd ($T3,$Hkey,0b01001110); + &pxor ($T2,$T1); # + &pxor ($T3,$Hkey); + &pclmulqdq ($T2,$T3,0x00); ####### + &pxor ($T2,$Xi); # + &pxor ($T2,$Xhi); # + + &movdqa ($T3,$T2); # + &psrldq ($T2,8); + &pslldq ($T3,8); # + &pxor ($Xhi,$T2); + &pxor ($Xi,$T3); # +} + +if (1) { # Algorithm 9 with <<1 twist. + # Reduction is shorter and uses only two + # temporary registers, which makes it better + # candidate for interleaving with 64x64 + # multiplication. Pre-modulo-scheduled loop + # was found to be ~20% faster than Algorithm 5 + # below. Algorithm 9 was therefore chosen for + # further optimization... + +sub reduction_alg9 { # 17/13 times faster than Intel version +my ($Xhi,$Xi) = @_; + + # 1st phase + &movdqa ($T1,$Xi); # + &psllq ($Xi,1); + &pxor ($Xi,$T1); # + &psllq ($Xi,5); # + &pxor ($Xi,$T1); # + &psllq ($Xi,57); # + &movdqa ($T2,$Xi); # + &pslldq ($Xi,8); + &psrldq ($T2,8); # + &pxor ($Xi,$T1); + &pxor ($Xhi,$T2); # + + # 2nd phase + &movdqa ($T2,$Xi); + &psrlq ($Xi,5); + &pxor ($Xi,$T2); # + &psrlq ($Xi,1); # + &pxor ($Xi,$T2); # + &pxor ($T2,$Xhi); + &psrlq ($Xi,1); # + &pxor ($Xi,$T2); # +} + +&function_begin_B("gcm_init_clmul"); + &mov ($Htbl,&wparam(0)); + &mov ($Xip,&wparam(1)); + + &call (&label("pic")); +&set_label("pic"); + &blindpop ($const); + &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); + + &movdqu ($Hkey,&QWP(0,$Xip)); + &pshufd ($Hkey,$Hkey,0b01001110);# dword swap + + # <<1 twist + &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword + &movdqa ($T1,$Hkey); + &psllq ($Hkey,1); + &pxor ($T3,$T3); # + &psrlq ($T1,63); + &pcmpgtd ($T3,$T2); # broadcast carry bit + &pslldq ($T1,8); + &por ($Hkey,$T1); # H<<=1 + + # magic reduction + &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial + &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial + + # calculate H^2 + &movdqa ($Xi,$Hkey); + &clmul64x64_T2 ($Xhi,$Xi,$Hkey); + &reduction_alg9 ($Xhi,$Xi); + + &movdqu (&QWP(0,$Htbl),$Hkey); # save H + &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 + + &ret (); +&function_end_B("gcm_init_clmul"); + +&function_begin_B("gcm_gmult_clmul"); + &mov ($Xip,&wparam(0)); + &mov ($Htbl,&wparam(1)); + + &call (&label("pic")); +&set_label("pic"); + &blindpop ($const); + &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); + + &movdqu ($Xi,&QWP(0,$Xip)); + &movdqa ($T3,&QWP(0,$const)); + &movups ($Hkey,&QWP(0,$Htbl)); + &pshufb ($Xi,$T3); + + &clmul64x64_T2 ($Xhi,$Xi,$Hkey); + &reduction_alg9 ($Xhi,$Xi); + + &pshufb ($Xi,$T3); + &movdqu (&QWP(0,$Xip),$Xi); + + &ret (); +&function_end_B("gcm_gmult_clmul"); + +&function_begin("gcm_ghash_clmul"); + &mov ($Xip,&wparam(0)); + &mov ($Htbl,&wparam(1)); + &mov ($inp,&wparam(2)); + &mov ($len,&wparam(3)); + + &call (&label("pic")); +&set_label("pic"); + &blindpop ($const); + &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); + + &movdqu ($Xi,&QWP(0,$Xip)); + &movdqa ($T3,&QWP(0,$const)); + &movdqu ($Hkey,&QWP(0,$Htbl)); + &pshufb ($Xi,$T3); + + &sub ($len,0x10); + &jz (&label("odd_tail")); + + ####### + # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = + # [(H*Ii+1) + (H*Xi+1)] mod P = + # [(H*Ii+1) + H^2*(Ii+Xi)] mod P + # + &movdqu ($T1,&QWP(0,$inp)); # Ii + &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 + &pshufb ($T1,$T3); + &pshufb ($Xn,$T3); + &pxor ($Xi,$T1); # Ii+Xi + + &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 + &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 + + &lea ($inp,&DWP(32,$inp)); # i+=2 + &sub ($len,0x20); + &jbe (&label("even_tail")); + +&set_label("mod_loop"); + &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) + &movdqu ($T1,&QWP(0,$inp)); # Ii + &movups ($Hkey,&QWP(0,$Htbl)); # load H + + &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) + &pxor ($Xhi,$Xhn); + + &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 + &pshufb ($T1,$T3); + &pshufb ($Xn,$T3); + + &movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1 + &movdqa ($Xhn,$Xn); + &pxor ($Xhi,$T1); # "Ii+Xi", consume early + + &movdqa ($T1,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase + &psllq ($Xi,1); + &pxor ($Xi,$T1); # + &psllq ($Xi,5); # + &pxor ($Xi,$T1); # + &pclmulqdq ($Xn,$Hkey,0x00); ####### + &psllq ($Xi,57); # + &movdqa ($T2,$Xi); # + &pslldq ($Xi,8); + &psrldq ($T2,8); # + &pxor ($Xi,$T1); + &pshufd ($T1,$T3,0b01001110); + &pxor ($Xhi,$T2); # + &pxor ($T1,$T3); + &pshufd ($T3,$Hkey,0b01001110); + &pxor ($T3,$Hkey); # + + &pclmulqdq ($Xhn,$Hkey,0x11); ####### + &movdqa ($T2,$Xi); # 2nd phase + &psrlq ($Xi,5); + &pxor ($Xi,$T2); # + &psrlq ($Xi,1); # + &pxor ($Xi,$T2); # + &pxor ($T2,$Xhi); + &psrlq ($Xi,1); # + &pxor ($Xi,$T2); # + + &pclmulqdq ($T1,$T3,0x00); ####### + &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 + &xorps ($T1,$Xn); # + &xorps ($T1,$Xhn); # + + &movdqa ($T3,$T1); # + &psrldq ($T1,8); + &pslldq ($T3,8); # + &pxor ($Xhn,$T1); + &pxor ($Xn,$T3); # + &movdqa ($T3,&QWP(0,$const)); + + &lea ($inp,&DWP(32,$inp)); + &sub ($len,0x20); + &ja (&label("mod_loop")); + +&set_label("even_tail"); + &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) + + &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) + &pxor ($Xhi,$Xhn); + + &reduction_alg9 ($Xhi,$Xi); + + &test ($len,$len); + &jnz (&label("done")); + + &movups ($Hkey,&QWP(0,$Htbl)); # load H +&set_label("odd_tail"); + &movdqu ($T1,&QWP(0,$inp)); # Ii + &pshufb ($T1,$T3); + &pxor ($Xi,$T1); # Ii+Xi + + &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) + &reduction_alg9 ($Xhi,$Xi); + +&set_label("done"); + &pshufb ($Xi,$T3); + &movdqu (&QWP(0,$Xip),$Xi); +&function_end("gcm_ghash_clmul"); + +} else { # Algorith 5. Kept for reference purposes. + +sub reduction_alg5 { # 19/16 times faster than Intel version +my ($Xhi,$Xi)=@_; + + # <<1 + &movdqa ($T1,$Xi); # + &movdqa ($T2,$Xhi); + &pslld ($Xi,1); + &pslld ($Xhi,1); # + &psrld ($T1,31); + &psrld ($T2,31); # + &movdqa ($T3,$T1); + &pslldq ($T1,4); + &psrldq ($T3,12); # + &pslldq ($T2,4); + &por ($Xhi,$T3); # + &por ($Xi,$T1); + &por ($Xhi,$T2); # + + # 1st phase + &movdqa ($T1,$Xi); + &movdqa ($T2,$Xi); + &movdqa ($T3,$Xi); # + &pslld ($T1,31); + &pslld ($T2,30); + &pslld ($Xi,25); # + &pxor ($T1,$T2); + &pxor ($T1,$Xi); # + &movdqa ($T2,$T1); # + &pslldq ($T1,12); + &psrldq ($T2,4); # + &pxor ($T3,$T1); + + # 2nd phase + &pxor ($Xhi,$T3); # + &movdqa ($Xi,$T3); + &movdqa ($T1,$T3); + &psrld ($Xi,1); # + &psrld ($T1,2); + &psrld ($T3,7); # + &pxor ($Xi,$T1); + &pxor ($Xhi,$T2); + &pxor ($Xi,$T3); # + &pxor ($Xi,$Xhi); # +} + +&function_begin_B("gcm_init_clmul"); + &mov ($Htbl,&wparam(0)); + &mov ($Xip,&wparam(1)); + + &call (&label("pic")); +&set_label("pic"); + &blindpop ($const); + &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); + + &movdqu ($Hkey,&QWP(0,$Xip)); + &pshufd ($Hkey,$Hkey,0b01001110);# dword swap + + # calculate H^2 + &movdqa ($Xi,$Hkey); + &clmul64x64_T3 ($Xhi,$Xi,$Hkey); + &reduction_alg5 ($Xhi,$Xi); + + &movdqu (&QWP(0,$Htbl),$Hkey); # save H + &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 + + &ret (); +&function_end_B("gcm_init_clmul"); + +&function_begin_B("gcm_gmult_clmul"); + &mov ($Xip,&wparam(0)); + &mov ($Htbl,&wparam(1)); + + &call (&label("pic")); +&set_label("pic"); + &blindpop ($const); + &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); + + &movdqu ($Xi,&QWP(0,$Xip)); + &movdqa ($Xn,&QWP(0,$const)); + &movdqu ($Hkey,&QWP(0,$Htbl)); + &pshufb ($Xi,$Xn); + + &clmul64x64_T3 ($Xhi,$Xi,$Hkey); + &reduction_alg5 ($Xhi,$Xi); + + &pshufb ($Xi,$Xn); + &movdqu (&QWP(0,$Xip),$Xi); + + &ret (); +&function_end_B("gcm_gmult_clmul"); + +&function_begin("gcm_ghash_clmul"); + &mov ($Xip,&wparam(0)); + &mov ($Htbl,&wparam(1)); + &mov ($inp,&wparam(2)); + &mov ($len,&wparam(3)); + + &call (&label("pic")); +&set_label("pic"); + &blindpop ($const); + &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); + + &movdqu ($Xi,&QWP(0,$Xip)); + &movdqa ($T3,&QWP(0,$const)); + &movdqu ($Hkey,&QWP(0,$Htbl)); + &pshufb ($Xi,$T3); + + &sub ($len,0x10); + &jz (&label("odd_tail")); + + ####### + # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = + # [(H*Ii+1) + (H*Xi+1)] mod P = + # [(H*Ii+1) + H^2*(Ii+Xi)] mod P + # + &movdqu ($T1,&QWP(0,$inp)); # Ii + &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 + &pshufb ($T1,$T3); + &pshufb ($Xn,$T3); + &pxor ($Xi,$T1); # Ii+Xi + + &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 + &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 + + &sub ($len,0x20); + &lea ($inp,&DWP(32,$inp)); # i+=2 + &jbe (&label("even_tail")); + +&set_label("mod_loop"); + &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) + &movdqu ($Hkey,&QWP(0,$Htbl)); # load H + + &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) + &pxor ($Xhi,$Xhn); + + &reduction_alg5 ($Xhi,$Xi); + + ####### + &movdqa ($T3,&QWP(0,$const)); + &movdqu ($T1,&QWP(0,$inp)); # Ii + &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 + &pshufb ($T1,$T3); + &pshufb ($Xn,$T3); + &pxor ($Xi,$T1); # Ii+Xi + + &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 + &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 + + &sub ($len,0x20); + &lea ($inp,&DWP(32,$inp)); + &ja (&label("mod_loop")); + +&set_label("even_tail"); + &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) + + &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) + &pxor ($Xhi,$Xhn); + + &reduction_alg5 ($Xhi,$Xi); + + &movdqa ($T3,&QWP(0,$const)); + &test ($len,$len); + &jnz (&label("done")); + + &movdqu ($Hkey,&QWP(0,$Htbl)); # load H +&set_label("odd_tail"); + &movdqu ($T1,&QWP(0,$inp)); # Ii + &pshufb ($T1,$T3); + &pxor ($Xi,$T1); # Ii+Xi + + &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) + &reduction_alg5 ($Xhi,$Xi); + + &movdqa ($T3,&QWP(0,$const)); +&set_label("done"); + &pshufb ($Xi,$T3); + &movdqu (&QWP(0,$Xip),$Xi); +&function_end("gcm_ghash_clmul"); + +} + +&set_label("bswap",64); + &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0); + &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial +}} # $sse2 + +&set_label("rem_4bit",64); + &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S); + &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S); + &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S); + &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S); +&set_label("rem_8bit",64); + &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E); + &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E); + &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E); + &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E); + &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E); + &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E); + &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E); + &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E); + &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE); + &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE); + &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE); + &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE); + &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E); + &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E); + &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE); + &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE); + &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E); + &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E); + &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E); + &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E); + &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E); + &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E); + &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E); + &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E); + &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE); + &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE); + &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE); + &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE); + &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E); + &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E); + &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE); + &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE); +}}} # !$x86only + +&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>"); +&asm_finish(); + +# A question was risen about choice of vanilla MMX. Or rather why wasn't +# SSE2 chosen instead? In addition to the fact that MMX runs on legacy +# CPUs such as PIII, "4-bit" MMX version was observed to provide better +# performance than *corresponding* SSE2 one even on contemporary CPUs. +# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2 +# implementation featuring full range of lookup-table sizes, but with +# per-invocation lookup table setup. Latter means that table size is +# chosen depending on how much data is to be hashed in every given call, +# more data - larger table. Best reported result for Core2 is ~4 cycles +# per processed byte out of 64KB block. This number accounts even for +# 64KB table setup overhead. As discussed in gcm128.c we choose to be +# more conservative in respect to lookup table sizes, but how do the +# results compare? Minimalistic "256B" MMX version delivers ~11 cycles +# on same platform. As also discussed in gcm128.c, next in line "8-bit +# Shoup's" or "4KB" method should deliver twice the performance of +# "256B" one, in other words not worse than ~6 cycles per byte. It +# should be also be noted that in SSE2 case improvement can be "super- +# linear," i.e. more than twice, mostly because >>8 maps to single +# instruction on SSE2 register. This is unlike "4-bit" case when >>4 +# maps to same amount of instructions in both MMX and SSE2 cases. +# Bottom line is that switch to SSE2 is considered to be justifiable +# only in case we choose to implement "8-bit" method... |