diff options
author | Parménides GV <parmegv@sdf.org> | 2014-04-08 11:38:09 +0200 |
---|---|---|
committer | Parménides GV <parmegv@sdf.org> | 2014-04-08 11:43:27 +0200 |
commit | 5fc5d37330d3535a0f421632694d1e7918fc22d7 (patch) | |
tree | 1aad0c286e58962c8895854907e530b9bc9bce5a /app/openssl/crypto/bn/bn_mul.c | |
parent | c206a91d320995f37f8abb33188bfd384249da3d (diff) |
Compiles correctly: app/build-native + gradle.
Diffstat (limited to 'app/openssl/crypto/bn/bn_mul.c')
-rw-r--r-- | app/openssl/crypto/bn/bn_mul.c | 1166 |
1 files changed, 1166 insertions, 0 deletions
diff --git a/app/openssl/crypto/bn/bn_mul.c b/app/openssl/crypto/bn/bn_mul.c new file mode 100644 index 00000000..12e5be80 --- /dev/null +++ b/app/openssl/crypto/bn/bn_mul.c @@ -0,0 +1,1166 @@ +/* crypto/bn/bn_mul.c */ +/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) + * All rights reserved. + * + * This package is an SSL implementation written + * by Eric Young (eay@cryptsoft.com). + * The implementation was written so as to conform with Netscapes SSL. + * + * This library is free for commercial and non-commercial use as long as + * the following conditions are aheared to. The following conditions + * apply to all code found in this distribution, be it the RC4, RSA, + * lhash, DES, etc., code; not just the SSL code. The SSL documentation + * included with this distribution is covered by the same copyright terms + * except that the holder is Tim Hudson (tjh@cryptsoft.com). + * + * Copyright remains Eric Young's, and as such any Copyright notices in + * the code are not to be removed. + * If this package is used in a product, Eric Young should be given attribution + * as the author of the parts of the library used. + * This can be in the form of a textual message at program startup or + * in documentation (online or textual) provided with the package. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * "This product includes cryptographic software written by + * Eric Young (eay@cryptsoft.com)" + * The word 'cryptographic' can be left out if the rouines from the library + * being used are not cryptographic related :-). + * 4. If you include any Windows specific code (or a derivative thereof) from + * the apps directory (application code) you must include an acknowledgement: + * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" + * + * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * The licence and distribution terms for any publically available version or + * derivative of this code cannot be changed. i.e. this code cannot simply be + * copied and put under another distribution licence + * [including the GNU Public Licence.] + */ + +#ifndef BN_DEBUG +# undef NDEBUG /* avoid conflicting definitions */ +# define NDEBUG +#endif + +#include <stdio.h> +#include <assert.h> +#include "cryptlib.h" +#include "bn_lcl.h" + +#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) +/* Here follows specialised variants of bn_add_words() and + bn_sub_words(). They have the property performing operations on + arrays of different sizes. The sizes of those arrays is expressed through + cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, + which is the delta between the two lengths, calculated as len(a)-len(b). + All lengths are the number of BN_ULONGs... For the operations that require + a result array as parameter, it must have the length cl+abs(dl). + These functions should probably end up in bn_asm.c as soon as there are + assembler counterparts for the systems that use assembler files. */ + +BN_ULONG bn_sub_part_words(BN_ULONG *r, + const BN_ULONG *a, const BN_ULONG *b, + int cl, int dl) + { + BN_ULONG c, t; + + assert(cl >= 0); + c = bn_sub_words(r, a, b, cl); + + if (dl == 0) + return c; + + r += cl; + a += cl; + b += cl; + + if (dl < 0) + { +#ifdef BN_COUNT + fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); +#endif + for (;;) + { + t = b[0]; + r[0] = (0-t-c)&BN_MASK2; + if (t != 0) c=1; + if (++dl >= 0) break; + + t = b[1]; + r[1] = (0-t-c)&BN_MASK2; + if (t != 0) c=1; + if (++dl >= 0) break; + + t = b[2]; + r[2] = (0-t-c)&BN_MASK2; + if (t != 0) c=1; + if (++dl >= 0) break; + + t = b[3]; + r[3] = (0-t-c)&BN_MASK2; + if (t != 0) c=1; + if (++dl >= 0) break; + + b += 4; + r += 4; + } + } + else + { + int save_dl = dl; +#ifdef BN_COUNT + fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c); +#endif + while(c) + { + t = a[0]; + r[0] = (t-c)&BN_MASK2; + if (t != 0) c=0; + if (--dl <= 0) break; + + t = a[1]; + r[1] = (t-c)&BN_MASK2; + if (t != 0) c=0; + if (--dl <= 0) break; + + t = a[2]; + r[2] = (t-c)&BN_MASK2; + if (t != 0) c=0; + if (--dl <= 0) break; + + t = a[3]; + r[3] = (t-c)&BN_MASK2; + if (t != 0) c=0; + if (--dl <= 0) break; + + save_dl = dl; + a += 4; + r += 4; + } + if (dl > 0) + { +#ifdef BN_COUNT + fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); +#endif + if (save_dl > dl) + { + switch (save_dl - dl) + { + case 1: + r[1] = a[1]; + if (--dl <= 0) break; + case 2: + r[2] = a[2]; + if (--dl <= 0) break; + case 3: + r[3] = a[3]; + if (--dl <= 0) break; + } + a += 4; + r += 4; + } + } + if (dl > 0) + { +#ifdef BN_COUNT + fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl); +#endif + for(;;) + { + r[0] = a[0]; + if (--dl <= 0) break; + r[1] = a[1]; + if (--dl <= 0) break; + r[2] = a[2]; + if (--dl <= 0) break; + r[3] = a[3]; + if (--dl <= 0) break; + + a += 4; + r += 4; + } + } + } + return c; + } +#endif + +BN_ULONG bn_add_part_words(BN_ULONG *r, + const BN_ULONG *a, const BN_ULONG *b, + int cl, int dl) + { + BN_ULONG c, l, t; + + assert(cl >= 0); + c = bn_add_words(r, a, b, cl); + + if (dl == 0) + return c; + + r += cl; + a += cl; + b += cl; + + if (dl < 0) + { + int save_dl = dl; +#ifdef BN_COUNT + fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); +#endif + while (c) + { + l=(c+b[0])&BN_MASK2; + c=(l < c); + r[0]=l; + if (++dl >= 0) break; + + l=(c+b[1])&BN_MASK2; + c=(l < c); + r[1]=l; + if (++dl >= 0) break; + + l=(c+b[2])&BN_MASK2; + c=(l < c); + r[2]=l; + if (++dl >= 0) break; + + l=(c+b[3])&BN_MASK2; + c=(l < c); + r[3]=l; + if (++dl >= 0) break; + + save_dl = dl; + b+=4; + r+=4; + } + if (dl < 0) + { +#ifdef BN_COUNT + fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl); +#endif + if (save_dl < dl) + { + switch (dl - save_dl) + { + case 1: + r[1] = b[1]; + if (++dl >= 0) break; + case 2: + r[2] = b[2]; + if (++dl >= 0) break; + case 3: + r[3] = b[3]; + if (++dl >= 0) break; + } + b += 4; + r += 4; + } + } + if (dl < 0) + { +#ifdef BN_COUNT + fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl); +#endif + for(;;) + { + r[0] = b[0]; + if (++dl >= 0) break; + r[1] = b[1]; + if (++dl >= 0) break; + r[2] = b[2]; + if (++dl >= 0) break; + r[3] = b[3]; + if (++dl >= 0) break; + + b += 4; + r += 4; + } + } + } + else + { + int save_dl = dl; +#ifdef BN_COUNT + fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); +#endif + while (c) + { + t=(a[0]+c)&BN_MASK2; + c=(t < c); + r[0]=t; + if (--dl <= 0) break; + + t=(a[1]+c)&BN_MASK2; + c=(t < c); + r[1]=t; + if (--dl <= 0) break; + + t=(a[2]+c)&BN_MASK2; + c=(t < c); + r[2]=t; + if (--dl <= 0) break; + + t=(a[3]+c)&BN_MASK2; + c=(t < c); + r[3]=t; + if (--dl <= 0) break; + + save_dl = dl; + a+=4; + r+=4; + } +#ifdef BN_COUNT + fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); +#endif + if (dl > 0) + { + if (save_dl > dl) + { + switch (save_dl - dl) + { + case 1: + r[1] = a[1]; + if (--dl <= 0) break; + case 2: + r[2] = a[2]; + if (--dl <= 0) break; + case 3: + r[3] = a[3]; + if (--dl <= 0) break; + } + a += 4; + r += 4; + } + } + if (dl > 0) + { +#ifdef BN_COUNT + fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl); +#endif + for(;;) + { + r[0] = a[0]; + if (--dl <= 0) break; + r[1] = a[1]; + if (--dl <= 0) break; + r[2] = a[2]; + if (--dl <= 0) break; + r[3] = a[3]; + if (--dl <= 0) break; + + a += 4; + r += 4; + } + } + } + return c; + } + +#ifdef BN_RECURSION +/* Karatsuba recursive multiplication algorithm + * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ + +/* r is 2*n2 words in size, + * a and b are both n2 words in size. + * n2 must be a power of 2. + * We multiply and return the result. + * t must be 2*n2 words in size + * We calculate + * a[0]*b[0] + * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) + * a[1]*b[1] + */ +/* dnX may not be positive, but n2/2+dnX has to be */ +void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, + int dna, int dnb, BN_ULONG *t) + { + int n=n2/2,c1,c2; + int tna=n+dna, tnb=n+dnb; + unsigned int neg,zero; + BN_ULONG ln,lo,*p; + +# ifdef BN_COUNT + fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); +# endif +# ifdef BN_MUL_COMBA +# if 0 + if (n2 == 4) + { + bn_mul_comba4(r,a,b); + return; + } +# endif + /* Only call bn_mul_comba 8 if n2 == 8 and the + * two arrays are complete [steve] + */ + if (n2 == 8 && dna == 0 && dnb == 0) + { + bn_mul_comba8(r,a,b); + return; + } +# endif /* BN_MUL_COMBA */ + /* Else do normal multiply */ + if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) + { + bn_mul_normal(r,a,n2+dna,b,n2+dnb); + if ((dna + dnb) < 0) + memset(&r[2*n2 + dna + dnb], 0, + sizeof(BN_ULONG) * -(dna + dnb)); + return; + } + /* r=(a[0]-a[1])*(b[1]-b[0]) */ + c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); + c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); + zero=neg=0; + switch (c1*3+c2) + { + case -4: + bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ + bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ + break; + case -3: + zero=1; + break; + case -2: + bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ + bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ + neg=1; + break; + case -1: + case 0: + case 1: + zero=1; + break; + case 2: + bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ + bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ + neg=1; + break; + case 3: + zero=1; + break; + case 4: + bn_sub_part_words(t, a, &(a[n]),tna,n-tna); + bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); + break; + } + +# ifdef BN_MUL_COMBA + if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take + extra args to do this well */ + { + if (!zero) + bn_mul_comba4(&(t[n2]),t,&(t[n])); + else + memset(&(t[n2]),0,8*sizeof(BN_ULONG)); + + bn_mul_comba4(r,a,b); + bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); + } + else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could + take extra args to do this + well */ + { + if (!zero) + bn_mul_comba8(&(t[n2]),t,&(t[n])); + else + memset(&(t[n2]),0,16*sizeof(BN_ULONG)); + + bn_mul_comba8(r,a,b); + bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); + } + else +# endif /* BN_MUL_COMBA */ + { + p= &(t[n2*2]); + if (!zero) + bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); + else + memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); + bn_mul_recursive(r,a,b,n,0,0,p); + bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); + } + + /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign + * r[10] holds (a[0]*b[0]) + * r[32] holds (b[1]*b[1]) + */ + + c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); + + if (neg) /* if t[32] is negative */ + { + c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); + } + else + { + /* Might have a carry */ + c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); + } + + /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) + * r[10] holds (a[0]*b[0]) + * r[32] holds (b[1]*b[1]) + * c1 holds the carry bits + */ + c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); + if (c1) + { + p= &(r[n+n2]); + lo= *p; + ln=(lo+c1)&BN_MASK2; + *p=ln; + + /* The overflow will stop before we over write + * words we should not overwrite */ + if (ln < (BN_ULONG)c1) + { + do { + p++; + lo= *p; + ln=(lo+1)&BN_MASK2; + *p=ln; + } while (ln == 0); + } + } + } + +/* n+tn is the word length + * t needs to be n*4 is size, as does r */ +/* tnX may not be negative but less than n */ +void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, + int tna, int tnb, BN_ULONG *t) + { + int i,j,n2=n*2; + int c1,c2,neg; + BN_ULONG ln,lo,*p; + +# ifdef BN_COUNT + fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n", + n, tna, n, tnb); +# endif + if (n < 8) + { + bn_mul_normal(r,a,n+tna,b,n+tnb); + return; + } + + /* r=(a[0]-a[1])*(b[1]-b[0]) */ + c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); + c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); + neg=0; + switch (c1*3+c2) + { + case -4: + bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ + bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ + break; + case -3: + /* break; */ + case -2: + bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ + bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ + neg=1; + break; + case -1: + case 0: + case 1: + /* break; */ + case 2: + bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ + bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ + neg=1; + break; + case 3: + /* break; */ + case 4: + bn_sub_part_words(t, a, &(a[n]),tna,n-tna); + bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); + break; + } + /* The zero case isn't yet implemented here. The speedup + would probably be negligible. */ +# if 0 + if (n == 4) + { + bn_mul_comba4(&(t[n2]),t,&(t[n])); + bn_mul_comba4(r,a,b); + bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); + memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); + } + else +# endif + if (n == 8) + { + bn_mul_comba8(&(t[n2]),t,&(t[n])); + bn_mul_comba8(r,a,b); + bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); + memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); + } + else + { + p= &(t[n2*2]); + bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); + bn_mul_recursive(r,a,b,n,0,0,p); + i=n/2; + /* If there is only a bottom half to the number, + * just do it */ + if (tna > tnb) + j = tna - i; + else + j = tnb - i; + if (j == 0) + { + bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), + i,tna-i,tnb-i,p); + memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); + } + else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ + { + bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), + i,tna-i,tnb-i,p); + memset(&(r[n2+tna+tnb]),0, + sizeof(BN_ULONG)*(n2-tna-tnb)); + } + else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ + { + memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); + if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL + && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) + { + bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); + } + else + { + for (;;) + { + i/=2; + /* these simplified conditions work + * exclusively because difference + * between tna and tnb is 1 or 0 */ + if (i < tna || i < tnb) + { + bn_mul_part_recursive(&(r[n2]), + &(a[n]),&(b[n]), + i,tna-i,tnb-i,p); + break; + } + else if (i == tna || i == tnb) + { + bn_mul_recursive(&(r[n2]), + &(a[n]),&(b[n]), + i,tna-i,tnb-i,p); + break; + } + } + } + } + } + + /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign + * r[10] holds (a[0]*b[0]) + * r[32] holds (b[1]*b[1]) + */ + + c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); + + if (neg) /* if t[32] is negative */ + { + c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); + } + else + { + /* Might have a carry */ + c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); + } + + /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) + * r[10] holds (a[0]*b[0]) + * r[32] holds (b[1]*b[1]) + * c1 holds the carry bits + */ + c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); + if (c1) + { + p= &(r[n+n2]); + lo= *p; + ln=(lo+c1)&BN_MASK2; + *p=ln; + + /* The overflow will stop before we over write + * words we should not overwrite */ + if (ln < (BN_ULONG)c1) + { + do { + p++; + lo= *p; + ln=(lo+1)&BN_MASK2; + *p=ln; + } while (ln == 0); + } + } + } + +/* a and b must be the same size, which is n2. + * r needs to be n2 words and t needs to be n2*2 + */ +void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, + BN_ULONG *t) + { + int n=n2/2; + +# ifdef BN_COUNT + fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); +# endif + + bn_mul_recursive(r,a,b,n,0,0,&(t[0])); + if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) + { + bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); + bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); + bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); + bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); + } + else + { + bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); + bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); + bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); + bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); + } + } + +/* a and b must be the same size, which is n2. + * r needs to be n2 words and t needs to be n2*2 + * l is the low words of the output. + * t needs to be n2*3 + */ +void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, + BN_ULONG *t) + { + int i,n; + int c1,c2; + int neg,oneg,zero; + BN_ULONG ll,lc,*lp,*mp; + +# ifdef BN_COUNT + fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); +# endif + n=n2/2; + + /* Calculate (al-ah)*(bh-bl) */ + neg=zero=0; + c1=bn_cmp_words(&(a[0]),&(a[n]),n); + c2=bn_cmp_words(&(b[n]),&(b[0]),n); + switch (c1*3+c2) + { + case -4: + bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); + bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); + break; + case -3: + zero=1; + break; + case -2: + bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); + bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); + neg=1; + break; + case -1: + case 0: + case 1: + zero=1; + break; + case 2: + bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); + bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); + neg=1; + break; + case 3: + zero=1; + break; + case 4: + bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); + bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); + break; + } + + oneg=neg; + /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ + /* r[10] = (a[1]*b[1]) */ +# ifdef BN_MUL_COMBA + if (n == 8) + { + bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); + bn_mul_comba8(r,&(a[n]),&(b[n])); + } + else +# endif + { + bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); + bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); + } + + /* s0 == low(al*bl) + * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) + * We know s0 and s1 so the only unknown is high(al*bl) + * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) + * high(al*bl) == s1 - (r[0]+l[0]+t[0]) + */ + if (l != NULL) + { + lp= &(t[n2+n]); + c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); + } + else + { + c1=0; + lp= &(r[0]); + } + + if (neg) + neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); + else + { + bn_add_words(&(t[n2]),lp,&(t[0]),n); + neg=0; + } + + if (l != NULL) + { + bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); + } + else + { + lp= &(t[n2+n]); + mp= &(t[n2]); + for (i=0; i<n; i++) + lp[i]=((~mp[i])+1)&BN_MASK2; + } + + /* s[0] = low(al*bl) + * t[3] = high(al*bl) + * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign + * r[10] = (a[1]*b[1]) + */ + /* R[10] = al*bl + * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) + * R[32] = ah*bh + */ + /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) + * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) + * R[3]=r[1]+(carry/borrow) + */ + if (l != NULL) + { + lp= &(t[n2]); + c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); + } + else + { + lp= &(t[n2+n]); + c1=0; + } + c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); + if (oneg) + c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); + else + c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); + + c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); + c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); + if (oneg) + c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); + else + c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); + + if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ + { + i=0; + if (c1 > 0) + { + lc=c1; + do { + ll=(r[i]+lc)&BN_MASK2; + r[i++]=ll; + lc=(lc > ll); + } while (lc); + } + else + { + lc= -c1; + do { + ll=r[i]; + r[i++]=(ll-lc)&BN_MASK2; + lc=(lc > ll); + } while (lc); + } + } + if (c2 != 0) /* Add starting at r[1] */ + { + i=n; + if (c2 > 0) + { + lc=c2; + do { + ll=(r[i]+lc)&BN_MASK2; + r[i++]=ll; + lc=(lc > ll); + } while (lc); + } + else + { + lc= -c2; + do { + ll=r[i]; + r[i++]=(ll-lc)&BN_MASK2; + lc=(lc > ll); + } while (lc); + } + } + } +#endif /* BN_RECURSION */ + +int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) + { + int ret=0; + int top,al,bl; + BIGNUM *rr; +#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) + int i; +#endif +#ifdef BN_RECURSION + BIGNUM *t=NULL; + int j=0,k; +#endif + +#ifdef BN_COUNT + fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); +#endif + + bn_check_top(a); + bn_check_top(b); + bn_check_top(r); + + al=a->top; + bl=b->top; + + if ((al == 0) || (bl == 0)) + { + BN_zero(r); + return(1); + } + top=al+bl; + + BN_CTX_start(ctx); + if ((r == a) || (r == b)) + { + if ((rr = BN_CTX_get(ctx)) == NULL) goto err; + } + else + rr = r; + rr->neg=a->neg^b->neg; + +#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) + i = al-bl; +#endif +#ifdef BN_MUL_COMBA + if (i == 0) + { +# if 0 + if (al == 4) + { + if (bn_wexpand(rr,8) == NULL) goto err; + rr->top=8; + bn_mul_comba4(rr->d,a->d,b->d); + goto end; + } +# endif + if (al == 8) + { + if (bn_wexpand(rr,16) == NULL) goto err; + rr->top=16; + bn_mul_comba8(rr->d,a->d,b->d); + goto end; + } + } +#endif /* BN_MUL_COMBA */ +#ifdef BN_RECURSION + if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) + { + if (i >= -1 && i <= 1) + { + /* Find out the power of two lower or equal + to the longest of the two numbers */ + if (i >= 0) + { + j = BN_num_bits_word((BN_ULONG)al); + } + if (i == -1) + { + j = BN_num_bits_word((BN_ULONG)bl); + } + j = 1<<(j-1); + assert(j <= al || j <= bl); + k = j+j; + t = BN_CTX_get(ctx); + if (t == NULL) + goto err; + if (al > j || bl > j) + { + if (bn_wexpand(t,k*4) == NULL) goto err; + if (bn_wexpand(rr,k*4) == NULL) goto err; + bn_mul_part_recursive(rr->d,a->d,b->d, + j,al-j,bl-j,t->d); + } + else /* al <= j || bl <= j */ + { + if (bn_wexpand(t,k*2) == NULL) goto err; + if (bn_wexpand(rr,k*2) == NULL) goto err; + bn_mul_recursive(rr->d,a->d,b->d, + j,al-j,bl-j,t->d); + } + rr->top=top; + goto end; + } +#if 0 + if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) + { + BIGNUM *tmp_bn = (BIGNUM *)b; + if (bn_wexpand(tmp_bn,al) == NULL) goto err; + tmp_bn->d[bl]=0; + bl++; + i--; + } + else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) + { + BIGNUM *tmp_bn = (BIGNUM *)a; + if (bn_wexpand(tmp_bn,bl) == NULL) goto err; + tmp_bn->d[al]=0; + al++; + i++; + } + if (i == 0) + { + /* symmetric and > 4 */ + /* 16 or larger */ + j=BN_num_bits_word((BN_ULONG)al); + j=1<<(j-1); + k=j+j; + t = BN_CTX_get(ctx); + if (al == j) /* exact multiple */ + { + if (bn_wexpand(t,k*2) == NULL) goto err; + if (bn_wexpand(rr,k*2) == NULL) goto err; + bn_mul_recursive(rr->d,a->d,b->d,al,t->d); + } + else + { + if (bn_wexpand(t,k*4) == NULL) goto err; + if (bn_wexpand(rr,k*4) == NULL) goto err; + bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); + } + rr->top=top; + goto end; + } +#endif + } +#endif /* BN_RECURSION */ + if (bn_wexpand(rr,top) == NULL) goto err; + rr->top=top; + bn_mul_normal(rr->d,a->d,al,b->d,bl); + +#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) +end: +#endif + bn_correct_top(rr); + if (r != rr) BN_copy(r,rr); + ret=1; +err: + bn_check_top(r); + BN_CTX_end(ctx); + return(ret); + } + +void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) + { + BN_ULONG *rr; + +#ifdef BN_COUNT + fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); +#endif + + if (na < nb) + { + int itmp; + BN_ULONG *ltmp; + + itmp=na; na=nb; nb=itmp; + ltmp=a; a=b; b=ltmp; + + } + rr= &(r[na]); + if (nb <= 0) + { + (void)bn_mul_words(r,a,na,0); + return; + } + else + rr[0]=bn_mul_words(r,a,na,b[0]); + + for (;;) + { + if (--nb <= 0) return; + rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); + if (--nb <= 0) return; + rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); + if (--nb <= 0) return; + rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); + if (--nb <= 0) return; + rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); + rr+=4; + r+=4; + b+=4; + } + } + +void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) + { +#ifdef BN_COUNT + fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); +#endif + bn_mul_words(r,a,n,b[0]); + + for (;;) + { + if (--n <= 0) return; + bn_mul_add_words(&(r[1]),a,n,b[1]); + if (--n <= 0) return; + bn_mul_add_words(&(r[2]),a,n,b[2]); + if (--n <= 0) return; + bn_mul_add_words(&(r[3]),a,n,b[3]); + if (--n <= 0) return; + bn_mul_add_words(&(r[4]),a,n,b[4]); + r+=4; + b+=4; + } + } |