diff options
author | Parménides GV <parmegv@sdf.org> | 2014-04-08 11:38:09 +0200 |
---|---|---|
committer | Parménides GV <parmegv@sdf.org> | 2014-04-08 11:43:27 +0200 |
commit | 5fc5d37330d3535a0f421632694d1e7918fc22d7 (patch) | |
tree | 1aad0c286e58962c8895854907e530b9bc9bce5a /app/openssl/crypto/bn/bn_gcd.c | |
parent | c206a91d320995f37f8abb33188bfd384249da3d (diff) |
Compiles correctly: app/build-native + gradle.
Diffstat (limited to 'app/openssl/crypto/bn/bn_gcd.c')
-rw-r--r-- | app/openssl/crypto/bn/bn_gcd.c | 654 |
1 files changed, 654 insertions, 0 deletions
diff --git a/app/openssl/crypto/bn/bn_gcd.c b/app/openssl/crypto/bn/bn_gcd.c new file mode 100644 index 00000000..4a352119 --- /dev/null +++ b/app/openssl/crypto/bn/bn_gcd.c @@ -0,0 +1,654 @@ +/* crypto/bn/bn_gcd.c */ +/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) + * All rights reserved. + * + * This package is an SSL implementation written + * by Eric Young (eay@cryptsoft.com). + * The implementation was written so as to conform with Netscapes SSL. + * + * This library is free for commercial and non-commercial use as long as + * the following conditions are aheared to. The following conditions + * apply to all code found in this distribution, be it the RC4, RSA, + * lhash, DES, etc., code; not just the SSL code. The SSL documentation + * included with this distribution is covered by the same copyright terms + * except that the holder is Tim Hudson (tjh@cryptsoft.com). + * + * Copyright remains Eric Young's, and as such any Copyright notices in + * the code are not to be removed. + * If this package is used in a product, Eric Young should be given attribution + * as the author of the parts of the library used. + * This can be in the form of a textual message at program startup or + * in documentation (online or textual) provided with the package. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * "This product includes cryptographic software written by + * Eric Young (eay@cryptsoft.com)" + * The word 'cryptographic' can be left out if the rouines from the library + * being used are not cryptographic related :-). + * 4. If you include any Windows specific code (or a derivative thereof) from + * the apps directory (application code) you must include an acknowledgement: + * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" + * + * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * The licence and distribution terms for any publically available version or + * derivative of this code cannot be changed. i.e. this code cannot simply be + * copied and put under another distribution licence + * [including the GNU Public Licence.] + */ +/* ==================================================================== + * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * 3. All advertising materials mentioning features or use of this + * software must display the following acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" + * + * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to + * endorse or promote products derived from this software without + * prior written permission. For written permission, please contact + * openssl-core@openssl.org. + * + * 5. Products derived from this software may not be called "OpenSSL" + * nor may "OpenSSL" appear in their names without prior written + * permission of the OpenSSL Project. + * + * 6. Redistributions of any form whatsoever must retain the following + * acknowledgment: + * "This product includes software developed by the OpenSSL Project + * for use in the OpenSSL Toolkit (http://www.openssl.org/)" + * + * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY + * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR + * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED + * OF THE POSSIBILITY OF SUCH DAMAGE. + * ==================================================================== + * + * This product includes cryptographic software written by Eric Young + * (eay@cryptsoft.com). This product includes software written by Tim + * Hudson (tjh@cryptsoft.com). + * + */ + +#include "cryptlib.h" +#include "bn_lcl.h" + +static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); + +int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) + { + BIGNUM *a,*b,*t; + int ret=0; + + bn_check_top(in_a); + bn_check_top(in_b); + + BN_CTX_start(ctx); + a = BN_CTX_get(ctx); + b = BN_CTX_get(ctx); + if (a == NULL || b == NULL) goto err; + + if (BN_copy(a,in_a) == NULL) goto err; + if (BN_copy(b,in_b) == NULL) goto err; + a->neg = 0; + b->neg = 0; + + if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; } + t=euclid(a,b); + if (t == NULL) goto err; + + if (BN_copy(r,t) == NULL) goto err; + ret=1; +err: + BN_CTX_end(ctx); + bn_check_top(r); + return(ret); + } + +static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) + { + BIGNUM *t; + int shifts=0; + + bn_check_top(a); + bn_check_top(b); + + /* 0 <= b <= a */ + while (!BN_is_zero(b)) + { + /* 0 < b <= a */ + + if (BN_is_odd(a)) + { + if (BN_is_odd(b)) + { + if (!BN_sub(a,a,b)) goto err; + if (!BN_rshift1(a,a)) goto err; + if (BN_cmp(a,b) < 0) + { t=a; a=b; b=t; } + } + else /* a odd - b even */ + { + if (!BN_rshift1(b,b)) goto err; + if (BN_cmp(a,b) < 0) + { t=a; a=b; b=t; } + } + } + else /* a is even */ + { + if (BN_is_odd(b)) + { + if (!BN_rshift1(a,a)) goto err; + if (BN_cmp(a,b) < 0) + { t=a; a=b; b=t; } + } + else /* a even - b even */ + { + if (!BN_rshift1(a,a)) goto err; + if (!BN_rshift1(b,b)) goto err; + shifts++; + } + } + /* 0 <= b <= a */ + } + + if (shifts) + { + if (!BN_lshift(a,a,shifts)) goto err; + } + bn_check_top(a); + return(a); +err: + return(NULL); + } + + +/* solves ax == 1 (mod n) */ +static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, + const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); +BIGNUM *BN_mod_inverse(BIGNUM *in, + const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) + { + BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; + BIGNUM *ret=NULL; + int sign; + + if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) + { + return BN_mod_inverse_no_branch(in, a, n, ctx); + } + + bn_check_top(a); + bn_check_top(n); + + BN_CTX_start(ctx); + A = BN_CTX_get(ctx); + B = BN_CTX_get(ctx); + X = BN_CTX_get(ctx); + D = BN_CTX_get(ctx); + M = BN_CTX_get(ctx); + Y = BN_CTX_get(ctx); + T = BN_CTX_get(ctx); + if (T == NULL) goto err; + + if (in == NULL) + R=BN_new(); + else + R=in; + if (R == NULL) goto err; + + BN_one(X); + BN_zero(Y); + if (BN_copy(B,a) == NULL) goto err; + if (BN_copy(A,n) == NULL) goto err; + A->neg = 0; + if (B->neg || (BN_ucmp(B, A) >= 0)) + { + if (!BN_nnmod(B, B, A, ctx)) goto err; + } + sign = -1; + /* From B = a mod |n|, A = |n| it follows that + * + * 0 <= B < A, + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + */ + + if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) + { + /* Binary inversion algorithm; requires odd modulus. + * This is faster than the general algorithm if the modulus + * is sufficiently small (about 400 .. 500 bits on 32-bit + * sytems, but much more on 64-bit systems) */ + int shift; + + while (!BN_is_zero(B)) + { + /* + * 0 < B < |n|, + * 0 < A <= |n|, + * (1) -sign*X*a == B (mod |n|), + * (2) sign*Y*a == A (mod |n|) + */ + + /* Now divide B by the maximum possible power of two in the integers, + * and divide X by the same value mod |n|. + * When we're done, (1) still holds. */ + shift = 0; + while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ + { + shift++; + + if (BN_is_odd(X)) + { + if (!BN_uadd(X, X, n)) goto err; + } + /* now X is even, so we can easily divide it by two */ + if (!BN_rshift1(X, X)) goto err; + } + if (shift > 0) + { + if (!BN_rshift(B, B, shift)) goto err; + } + + + /* Same for A and Y. Afterwards, (2) still holds. */ + shift = 0; + while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ + { + shift++; + + if (BN_is_odd(Y)) + { + if (!BN_uadd(Y, Y, n)) goto err; + } + /* now Y is even */ + if (!BN_rshift1(Y, Y)) goto err; + } + if (shift > 0) + { + if (!BN_rshift(A, A, shift)) goto err; + } + + + /* We still have (1) and (2). + * Both A and B are odd. + * The following computations ensure that + * + * 0 <= B < |n|, + * 0 < A < |n|, + * (1) -sign*X*a == B (mod |n|), + * (2) sign*Y*a == A (mod |n|), + * + * and that either A or B is even in the next iteration. + */ + if (BN_ucmp(B, A) >= 0) + { + /* -sign*(X + Y)*a == B - A (mod |n|) */ + if (!BN_uadd(X, X, Y)) goto err; + /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that + * actually makes the algorithm slower */ + if (!BN_usub(B, B, A)) goto err; + } + else + { + /* sign*(X + Y)*a == A - B (mod |n|) */ + if (!BN_uadd(Y, Y, X)) goto err; + /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ + if (!BN_usub(A, A, B)) goto err; + } + } + } + else + { + /* general inversion algorithm */ + + while (!BN_is_zero(B)) + { + BIGNUM *tmp; + + /* + * 0 < B < A, + * (*) -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|) + */ + + /* (D, M) := (A/B, A%B) ... */ + if (BN_num_bits(A) == BN_num_bits(B)) + { + if (!BN_one(D)) goto err; + if (!BN_sub(M,A,B)) goto err; + } + else if (BN_num_bits(A) == BN_num_bits(B) + 1) + { + /* A/B is 1, 2, or 3 */ + if (!BN_lshift1(T,B)) goto err; + if (BN_ucmp(A,T) < 0) + { + /* A < 2*B, so D=1 */ + if (!BN_one(D)) goto err; + if (!BN_sub(M,A,B)) goto err; + } + else + { + /* A >= 2*B, so D=2 or D=3 */ + if (!BN_sub(M,A,T)) goto err; + if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ + if (BN_ucmp(A,D) < 0) + { + /* A < 3*B, so D=2 */ + if (!BN_set_word(D,2)) goto err; + /* M (= A - 2*B) already has the correct value */ + } + else + { + /* only D=3 remains */ + if (!BN_set_word(D,3)) goto err; + /* currently M = A - 2*B, but we need M = A - 3*B */ + if (!BN_sub(M,M,B)) goto err; + } + } + } + else + { + if (!BN_div(D,M,A,B,ctx)) goto err; + } + + /* Now + * A = D*B + M; + * thus we have + * (**) sign*Y*a == D*B + M (mod |n|). + */ + + tmp=A; /* keep the BIGNUM object, the value does not matter */ + + /* (A, B) := (B, A mod B) ... */ + A=B; + B=M; + /* ... so we have 0 <= B < A again */ + + /* Since the former M is now B and the former B is now A, + * (**) translates into + * sign*Y*a == D*A + B (mod |n|), + * i.e. + * sign*Y*a - D*A == B (mod |n|). + * Similarly, (*) translates into + * -sign*X*a == A (mod |n|). + * + * Thus, + * sign*Y*a + D*sign*X*a == B (mod |n|), + * i.e. + * sign*(Y + D*X)*a == B (mod |n|). + * + * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + * Note that X and Y stay non-negative all the time. + */ + + /* most of the time D is very small, so we can optimize tmp := D*X+Y */ + if (BN_is_one(D)) + { + if (!BN_add(tmp,X,Y)) goto err; + } + else + { + if (BN_is_word(D,2)) + { + if (!BN_lshift1(tmp,X)) goto err; + } + else if (BN_is_word(D,4)) + { + if (!BN_lshift(tmp,X,2)) goto err; + } + else if (D->top == 1) + { + if (!BN_copy(tmp,X)) goto err; + if (!BN_mul_word(tmp,D->d[0])) goto err; + } + else + { + if (!BN_mul(tmp,D,X,ctx)) goto err; + } + if (!BN_add(tmp,tmp,Y)) goto err; + } + + M=Y; /* keep the BIGNUM object, the value does not matter */ + Y=X; + X=tmp; + sign = -sign; + } + } + + /* + * The while loop (Euclid's algorithm) ends when + * A == gcd(a,n); + * we have + * sign*Y*a == A (mod |n|), + * where Y is non-negative. + */ + + if (sign < 0) + { + if (!BN_sub(Y,n,Y)) goto err; + } + /* Now Y*a == A (mod |n|). */ + + + if (BN_is_one(A)) + { + /* Y*a == 1 (mod |n|) */ + if (!Y->neg && BN_ucmp(Y,n) < 0) + { + if (!BN_copy(R,Y)) goto err; + } + else + { + if (!BN_nnmod(R,Y,n,ctx)) goto err; + } + } + else + { + BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE); + goto err; + } + ret=R; +err: + if ((ret == NULL) && (in == NULL)) BN_free(R); + BN_CTX_end(ctx); + bn_check_top(ret); + return(ret); + } + + +/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. + * It does not contain branches that may leak sensitive information. + */ +static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, + const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) + { + BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; + BIGNUM local_A, local_B; + BIGNUM *pA, *pB; + BIGNUM *ret=NULL; + int sign; + + bn_check_top(a); + bn_check_top(n); + + BN_CTX_start(ctx); + A = BN_CTX_get(ctx); + B = BN_CTX_get(ctx); + X = BN_CTX_get(ctx); + D = BN_CTX_get(ctx); + M = BN_CTX_get(ctx); + Y = BN_CTX_get(ctx); + T = BN_CTX_get(ctx); + if (T == NULL) goto err; + + if (in == NULL) + R=BN_new(); + else + R=in; + if (R == NULL) goto err; + + BN_one(X); + BN_zero(Y); + if (BN_copy(B,a) == NULL) goto err; + if (BN_copy(A,n) == NULL) goto err; + A->neg = 0; + + if (B->neg || (BN_ucmp(B, A) >= 0)) + { + /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, + * BN_div_no_branch will be called eventually. + */ + pB = &local_B; + BN_with_flags(pB, B, BN_FLG_CONSTTIME); + if (!BN_nnmod(B, pB, A, ctx)) goto err; + } + sign = -1; + /* From B = a mod |n|, A = |n| it follows that + * + * 0 <= B < A, + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + */ + + while (!BN_is_zero(B)) + { + BIGNUM *tmp; + + /* + * 0 < B < A, + * (*) -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|) + */ + + /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, + * BN_div_no_branch will be called eventually. + */ + pA = &local_A; + BN_with_flags(pA, A, BN_FLG_CONSTTIME); + + /* (D, M) := (A/B, A%B) ... */ + if (!BN_div(D,M,pA,B,ctx)) goto err; + + /* Now + * A = D*B + M; + * thus we have + * (**) sign*Y*a == D*B + M (mod |n|). + */ + + tmp=A; /* keep the BIGNUM object, the value does not matter */ + + /* (A, B) := (B, A mod B) ... */ + A=B; + B=M; + /* ... so we have 0 <= B < A again */ + + /* Since the former M is now B and the former B is now A, + * (**) translates into + * sign*Y*a == D*A + B (mod |n|), + * i.e. + * sign*Y*a - D*A == B (mod |n|). + * Similarly, (*) translates into + * -sign*X*a == A (mod |n|). + * + * Thus, + * sign*Y*a + D*sign*X*a == B (mod |n|), + * i.e. + * sign*(Y + D*X)*a == B (mod |n|). + * + * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + * Note that X and Y stay non-negative all the time. + */ + + if (!BN_mul(tmp,D,X,ctx)) goto err; + if (!BN_add(tmp,tmp,Y)) goto err; + + M=Y; /* keep the BIGNUM object, the value does not matter */ + Y=X; + X=tmp; + sign = -sign; + } + + /* + * The while loop (Euclid's algorithm) ends when + * A == gcd(a,n); + * we have + * sign*Y*a == A (mod |n|), + * where Y is non-negative. + */ + + if (sign < 0) + { + if (!BN_sub(Y,n,Y)) goto err; + } + /* Now Y*a == A (mod |n|). */ + + if (BN_is_one(A)) + { + /* Y*a == 1 (mod |n|) */ + if (!Y->neg && BN_ucmp(Y,n) < 0) + { + if (!BN_copy(R,Y)) goto err; + } + else + { + if (!BN_nnmod(R,Y,n,ctx)) goto err; + } + } + else + { + BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE); + goto err; + } + ret=R; +err: + if ((ret == NULL) && (in == NULL)) BN_free(R); + BN_CTX_end(ctx); + bn_check_top(ret); + return(ret); + } |