summaryrefslogtreecommitdiff
path: root/vendor/github.com/pion/rtcp/receiver_estimated_maximum_bitrate.go
blob: d37f49e6f283e11c45458e68a5007dc4c0bf7950 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package rtcp

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"math/bits"
)

// ReceiverEstimatedMaximumBitrate contains the receiver's estimated maximum bitrate.
// see: https://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03
type ReceiverEstimatedMaximumBitrate struct {
	// SSRC of sender
	SenderSSRC uint32

	// Estimated maximum bitrate
	Bitrate uint64

	// SSRC entries which this packet applies to
	SSRCs []uint32
}

var _ Packet = (*ReceiverEstimatedMaximumBitrate)(nil) // assert is a Packet

// Marshal serializes the packet and returns a byte slice.
func (p ReceiverEstimatedMaximumBitrate) Marshal() (buf []byte, err error) {
	// Allocate a buffer of the exact output size.
	buf = make([]byte, p.MarshalSize())

	// Write to our buffer.
	n, err := p.MarshalTo(buf)
	if err != nil {
		return nil, err
	}

	// This will always be true but just to be safe.
	if n != len(buf) {
		return nil, errWrongMarshalSize
	}

	return buf, nil
}

// MarshalSize returns the size of the packet when marshaled.
// This can be used in conjunction with `MarshalTo` to avoid allocations.
func (p ReceiverEstimatedMaximumBitrate) MarshalSize() (n int) {
	return 20 + 4*len(p.SSRCs)
}

// MarshalTo serializes the packet to the given byte slice.
func (p ReceiverEstimatedMaximumBitrate) MarshalTo(buf []byte) (n int, err error) {
	/*
	    0                   1                   2                   3
	    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |V=2|P| FMT=15  |   PT=206      |             length            |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |                  SSRC of packet sender                        |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |                  SSRC of media source                         |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |  Unique identifier 'R' 'E' 'M' 'B'                            |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |  Num SSRC     | BR Exp    |  BR Mantissa                      |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |   SSRC feedback                                               |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |  ...                                                          |
	*/

	size := p.MarshalSize()
	if len(buf) < size {
		return 0, errPacketTooShort
	}

	buf[0] = 143 // v=2, p=0, fmt=15
	buf[1] = 206

	// Length of this packet in 32-bit words minus one.
	length := uint16((p.MarshalSize() / 4) - 1)
	binary.BigEndian.PutUint16(buf[2:4], length)

	binary.BigEndian.PutUint32(buf[4:8], p.SenderSSRC)
	binary.BigEndian.PutUint32(buf[8:12], 0) // always zero

	// ALL HAIL REMB
	buf[12] = 'R'
	buf[13] = 'E'
	buf[14] = 'M'
	buf[15] = 'B'

	// Write the length of the ssrcs to follow at the end
	buf[16] = byte(len(p.SSRCs))

	// We can only encode 18 bits of information in the mantissa.
	// The exponent lets us shift to the left up to 64 places (6-bits).
	// We actually need a uint82 to encode the largest possible number,
	// but uint64 should be good enough for 2.3 exabytes per second.

	// So we need to truncate the bitrate and use the exponent for the shift.
	// bitrate = mantissa * (1 << exp)

	// Calculate the total shift based on the leading number of zeroes.
	// This will be negative if there is no shift required.
	shift := uint(64 - bits.LeadingZeros64(p.Bitrate))

	var mantissa uint
	var exp uint

	if shift <= 18 {
		// Fit everything in the mantissa because we can.
		mantissa = uint(p.Bitrate)
		exp = 0
	} else {
		// We can only use 18 bits of precision, so truncate.
		mantissa = uint(p.Bitrate >> (shift - 18))
		exp = shift - 18
	}

	// We can't quite use the binary package because
	// a) it's a uint24 and b) the exponent is only 6-bits
	// Just trust me; this is big-endian encoding.
	buf[17] = byte((exp << 2) | (mantissa >> 16))
	buf[18] = byte(mantissa >> 8)
	buf[19] = byte(mantissa)

	// Write the SSRCs at the very end.
	n = 20
	for _, ssrc := range p.SSRCs {
		binary.BigEndian.PutUint32(buf[n:n+4], ssrc)
		n += 4
	}

	return n, nil
}

// Unmarshal reads a REMB packet from the given byte slice.
func (p *ReceiverEstimatedMaximumBitrate) Unmarshal(buf []byte) (err error) {
	/*
	    0                   1                   2                   3
	    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |V=2|P| FMT=15  |   PT=206      |             length            |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |                  SSRC of packet sender                        |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |                  SSRC of media source                         |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |  Unique identifier 'R' 'E' 'M' 'B'                            |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |  Num SSRC     | BR Exp    |  BR Mantissa                      |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |   SSRC feedback                                               |
	   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	   |  ...                                                          |
	*/

	// 20 bytes is the size of the packet with no SSRCs
	if len(buf) < 20 {
		return errPacketTooShort
	}

	// version  must be 2
	version := buf[0] >> 6
	if version != 2 {
		return fmt.Errorf("%w expected(2) actual(%d)", errBadVersion, version)
	}

	// padding must be unset
	padding := (buf[0] >> 5) & 1
	if padding != 0 {
		return fmt.Errorf("%w expected(0) actual(%d)", errWrongPadding, padding)
	}

	// fmt must be 15
	fmtVal := buf[0] & 31
	if fmtVal != 15 {
		return fmt.Errorf("%w expected(15) actual(%d)", errWrongFeedbackType, fmtVal)
	}

	// Must be payload specific feedback
	if buf[1] != 206 {
		return fmt.Errorf("%w expected(206) actual(%d)", errWrongPayloadType, buf[1])
	}

	// length is the number of 32-bit words, minus 1
	length := binary.BigEndian.Uint16(buf[2:4])
	size := int((length + 1) * 4)

	// There's not way this could be legit
	if size < 20 {
		return errHeaderTooSmall
	}

	// Make sure the buffer is large enough.
	if len(buf) < size {
		return errPacketTooShort
	}

	// The sender SSRC is 32-bits
	p.SenderSSRC = binary.BigEndian.Uint32(buf[4:8])

	// The destination SSRC must be 0
	media := binary.BigEndian.Uint32(buf[8:12])
	if media != 0 {
		return errSSRCMustBeZero
	}

	// REMB rules all around me
	if !bytes.Equal(buf[12:16], []byte{'R', 'E', 'M', 'B'}) {
		return errMissingREMBidentifier
	}

	// The next byte is the number of SSRC entries at the end.
	num := int(buf[16])

	// Now we know the expected size, make sure they match.
	if size != 20+4*num {
		return errSSRCNumAndLengthMismatch
	}

	// Get the 6-bit exponent value.
	exp := buf[17] >> 2

	// The remaining 2-bits plus the next 16-bits are the mantissa.
	mantissa := uint64(buf[17]&3)<<16 | uint64(buf[18])<<8 | uint64(buf[19])

	// bitrate = mantissa * 2^exp

	if exp > 46 {
		// NOTE: We intentionally truncate values so they fit in a uint64.
		// Otherwise we would need a uint82.
		// This is 2.3 exabytes per second, which should be good enough.
		p.Bitrate = ^uint64(0)
	} else {
		p.Bitrate = mantissa << exp
	}

	// Clear any existing SSRCs
	p.SSRCs = nil

	// Loop over and parse the SSRC entires at the end.
	// We already verified that size == num * 4
	for n := 20; n < size; n += 4 {
		ssrc := binary.BigEndian.Uint32(buf[n : n+4])
		p.SSRCs = append(p.SSRCs, ssrc)
	}

	return nil
}

// Header returns the Header associated with this packet.
func (p *ReceiverEstimatedMaximumBitrate) Header() Header {
	return Header{
		Count:  FormatREMB,
		Type:   TypePayloadSpecificFeedback,
		Length: uint16((p.MarshalSize() / 4) - 1),
	}
}

// String prints the REMB packet in a human-readable format.
func (p *ReceiverEstimatedMaximumBitrate) String() string {
	// Keep a table of powers to units for fast conversion.
	bitUnits := []string{"b", "Kb", "Mb", "Gb", "Tb", "Pb", "Eb"}

	// Do some unit conversions because b/s is far too difficult to read.
	bitrate := float64(p.Bitrate)
	powers := 0

	// Keep dividing the bitrate until it's under 1000
	for bitrate >= 1000.0 && powers < len(bitUnits) {
		bitrate /= 1000.0
		powers++
	}

	unit := bitUnits[powers]

	return fmt.Sprintf("ReceiverEstimatedMaximumBitrate %x %.2f %s/s", p.SenderSSRC, bitrate, unit)
}

// DestinationSSRC returns an array of SSRC values that this packet refers to.
func (p *ReceiverEstimatedMaximumBitrate) DestinationSSRC() []uint32 {
	return p.SSRCs
}