1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
package dtls
import (
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"encoding/binary"
"math/big"
"time"
"github.com/pion/dtls/v2/pkg/crypto/elliptic"
"github.com/pion/dtls/v2/pkg/crypto/hash"
)
type ecdsaSignature struct {
R, S *big.Int
}
func valueKeyMessage(clientRandom, serverRandom, publicKey []byte, namedCurve elliptic.Curve) []byte {
serverECDHParams := make([]byte, 4)
serverECDHParams[0] = 3 // named curve
binary.BigEndian.PutUint16(serverECDHParams[1:], uint16(namedCurve))
serverECDHParams[3] = byte(len(publicKey))
plaintext := []byte{}
plaintext = append(plaintext, clientRandom...)
plaintext = append(plaintext, serverRandom...)
plaintext = append(plaintext, serverECDHParams...)
plaintext = append(plaintext, publicKey...)
return plaintext
}
// If the client provided a "signature_algorithms" extension, then all
// certificates provided by the server MUST be signed by a
// hash/signature algorithm pair that appears in that extension
//
// https://tools.ietf.org/html/rfc5246#section-7.4.2
func generateKeySignature(clientRandom, serverRandom, publicKey []byte, namedCurve elliptic.Curve, privateKey crypto.PrivateKey, hashAlgorithm hash.Algorithm) ([]byte, error) {
msg := valueKeyMessage(clientRandom, serverRandom, publicKey, namedCurve)
switch p := privateKey.(type) {
case ed25519.PrivateKey:
// https://crypto.stackexchange.com/a/55483
return p.Sign(rand.Reader, msg, crypto.Hash(0))
case *ecdsa.PrivateKey:
hashed := hashAlgorithm.Digest(msg)
return p.Sign(rand.Reader, hashed, hashAlgorithm.CryptoHash())
case *rsa.PrivateKey:
hashed := hashAlgorithm.Digest(msg)
return p.Sign(rand.Reader, hashed, hashAlgorithm.CryptoHash())
}
return nil, errKeySignatureGenerateUnimplemented
}
func verifyKeySignature(message, remoteKeySignature []byte, hashAlgorithm hash.Algorithm, rawCertificates [][]byte) error { //nolint:dupl
if len(rawCertificates) == 0 {
return errLengthMismatch
}
certificate, err := x509.ParseCertificate(rawCertificates[0])
if err != nil {
return err
}
switch p := certificate.PublicKey.(type) {
case ed25519.PublicKey:
if ok := ed25519.Verify(p, message, remoteKeySignature); !ok {
return errKeySignatureMismatch
}
return nil
case *ecdsa.PublicKey:
ecdsaSig := &ecdsaSignature{}
if _, err := asn1.Unmarshal(remoteKeySignature, ecdsaSig); err != nil {
return err
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
return errInvalidECDSASignature
}
hashed := hashAlgorithm.Digest(message)
if !ecdsa.Verify(p, hashed, ecdsaSig.R, ecdsaSig.S) {
return errKeySignatureMismatch
}
return nil
case *rsa.PublicKey:
switch certificate.SignatureAlgorithm {
case x509.SHA1WithRSA, x509.SHA256WithRSA, x509.SHA384WithRSA, x509.SHA512WithRSA:
hashed := hashAlgorithm.Digest(message)
return rsa.VerifyPKCS1v15(p, hashAlgorithm.CryptoHash(), hashed, remoteKeySignature)
default:
return errKeySignatureVerifyUnimplemented
}
}
return errKeySignatureVerifyUnimplemented
}
// If the server has sent a CertificateRequest message, the client MUST send the Certificate
// message. The ClientKeyExchange message is now sent, and the content
// of that message will depend on the public key algorithm selected
// between the ClientHello and the ServerHello. If the client has sent
// a certificate with signing ability, a digitally-signed
// CertificateVerify message is sent to explicitly verify possession of
// the private key in the certificate.
// https://tools.ietf.org/html/rfc5246#section-7.3
func generateCertificateVerify(handshakeBodies []byte, privateKey crypto.PrivateKey, hashAlgorithm hash.Algorithm) ([]byte, error) {
h := sha256.New()
if _, err := h.Write(handshakeBodies); err != nil {
return nil, err
}
hashed := h.Sum(nil)
switch p := privateKey.(type) {
case ed25519.PrivateKey:
// https://crypto.stackexchange.com/a/55483
return p.Sign(rand.Reader, hashed, crypto.Hash(0))
case *ecdsa.PrivateKey:
return p.Sign(rand.Reader, hashed, hashAlgorithm.CryptoHash())
case *rsa.PrivateKey:
return p.Sign(rand.Reader, hashed, hashAlgorithm.CryptoHash())
}
return nil, errInvalidSignatureAlgorithm
}
func verifyCertificateVerify(handshakeBodies []byte, hashAlgorithm hash.Algorithm, remoteKeySignature []byte, rawCertificates [][]byte) error { //nolint:dupl
if len(rawCertificates) == 0 {
return errLengthMismatch
}
certificate, err := x509.ParseCertificate(rawCertificates[0])
if err != nil {
return err
}
switch p := certificate.PublicKey.(type) {
case ed25519.PublicKey:
if ok := ed25519.Verify(p, handshakeBodies, remoteKeySignature); !ok {
return errKeySignatureMismatch
}
return nil
case *ecdsa.PublicKey:
ecdsaSig := &ecdsaSignature{}
if _, err := asn1.Unmarshal(remoteKeySignature, ecdsaSig); err != nil {
return err
}
if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
return errInvalidECDSASignature
}
hash := hashAlgorithm.Digest(handshakeBodies)
if !ecdsa.Verify(p, hash, ecdsaSig.R, ecdsaSig.S) {
return errKeySignatureMismatch
}
return nil
case *rsa.PublicKey:
switch certificate.SignatureAlgorithm {
case x509.SHA1WithRSA, x509.SHA256WithRSA, x509.SHA384WithRSA, x509.SHA512WithRSA:
hash := hashAlgorithm.Digest(handshakeBodies)
return rsa.VerifyPKCS1v15(p, hashAlgorithm.CryptoHash(), hash, remoteKeySignature)
default:
return errKeySignatureVerifyUnimplemented
}
}
return errKeySignatureVerifyUnimplemented
}
func loadCerts(rawCertificates [][]byte) ([]*x509.Certificate, error) {
if len(rawCertificates) == 0 {
return nil, errLengthMismatch
}
certs := make([]*x509.Certificate, 0, len(rawCertificates))
for _, rawCert := range rawCertificates {
cert, err := x509.ParseCertificate(rawCert)
if err != nil {
return nil, err
}
certs = append(certs, cert)
}
return certs, nil
}
func verifyClientCert(rawCertificates [][]byte, roots *x509.CertPool) (chains [][]*x509.Certificate, err error) {
certificate, err := loadCerts(rawCertificates)
if err != nil {
return nil, err
}
intermediateCAPool := x509.NewCertPool()
for _, cert := range certificate[1:] {
intermediateCAPool.AddCert(cert)
}
opts := x509.VerifyOptions{
Roots: roots,
CurrentTime: time.Now(),
Intermediates: intermediateCAPool,
KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth},
}
return certificate[0].Verify(opts)
}
func verifyServerCert(rawCertificates [][]byte, roots *x509.CertPool, serverName string) (chains [][]*x509.Certificate, err error) {
certificate, err := loadCerts(rawCertificates)
if err != nil {
return nil, err
}
intermediateCAPool := x509.NewCertPool()
for _, cert := range certificate[1:] {
intermediateCAPool.AddCert(cert)
}
opts := x509.VerifyOptions{
Roots: roots,
CurrentTime: time.Now(),
DNSName: serverName,
Intermediates: intermediateCAPool,
}
return certificate[0].Verify(opts)
}
|