package pass import ( "errors" "github.com/mmcloughlin/avo/ir" "github.com/mmcloughlin/avo/operand" "github.com/mmcloughlin/avo/reg" ) // ZeroExtend32BitOutputs applies the rule that "32-bit operands generate a // 32-bit result, zero-extended to a 64-bit result in the destination // general-purpose register" (Intel Software Developer’s Manual, Volume 1, // 3.4.1.1). func ZeroExtend32BitOutputs(i *ir.Instruction) error { for j, op := range i.Outputs { if !operand.IsR32(op) { continue } r, ok := op.(reg.GP) if !ok { panic("r32 operand should satisfy reg.GP") } i.Outputs[j] = r.As64() } return nil } // Liveness computes register liveness. func Liveness(fn *ir.Function) error { // Note this implementation is initially naive so as to be "obviously correct". // There are a well-known optimizations we can apply if necessary. is := fn.Instructions() // Process instructions in reverse: poor approximation to topological sort. // TODO(mbm): process instructions in topological sort order for l, r := 0, len(is)-1; l < r; l, r = l+1, r-1 { is[l], is[r] = is[r], is[l] } // Initialize. for _, i := range is { i.LiveIn = reg.NewMaskSetFromRegisters(i.InputRegisters()) i.LiveOut = reg.NewEmptyMaskSet() } // Iterative dataflow analysis. for { changes := false for _, i := range is { // out[n] = UNION[s IN succ[n]] in[s] for _, s := range i.Succ { if s == nil { continue } changes = i.LiveOut.Update(s.LiveIn) || changes } // in[n] = use[n] UNION (out[n] - def[n]) def := reg.NewMaskSetFromRegisters(i.OutputRegisters()) changes = i.LiveIn.Update(i.LiveOut.Difference(def)) || changes } if !changes { break } } return nil } // AllocateRegisters performs register allocation. func AllocateRegisters(fn *ir.Function) error { // Populate allocators (one per kind). as := map[reg.Kind]*Allocator{} for _, i := range fn.Instructions() { for _, r := range i.Registers() { k := r.Kind() if _, found := as[k]; !found { a, err := NewAllocatorForKind(k) if err != nil { return err } as[k] = a } as[k].Add(r.ID()) } } // Record register interferences. for _, i := range fn.Instructions() { for _, d := range i.OutputRegisters() { k := d.Kind() out := i.LiveOut.OfKind(k) out.DiscardRegister(d) as[k].AddInterferenceSet(d, out) } } // Execute register allocation. fn.Allocation = reg.NewEmptyAllocation() for _, a := range as { al, err := a.Allocate() if err != nil { return err } if err := fn.Allocation.Merge(al); err != nil { return err } } return nil } // BindRegisters applies the result of register allocation, replacing all virtual registers with their assigned physical registers. func BindRegisters(fn *ir.Function) error { for _, i := range fn.Instructions() { for idx := range i.Operands { i.Operands[idx] = operand.ApplyAllocation(i.Operands[idx], fn.Allocation) } } return nil } // VerifyAllocation performs sanity checks following register allocation. func VerifyAllocation(fn *ir.Function) error { // All registers should be physical. for _, i := range fn.Instructions() { for _, r := range i.Registers() { if reg.ToPhysical(r) == nil { return errors.New("non physical register found") } } } return nil }