diff options
Diffstat (limited to 'vendor/github.com/xtaci/kcp-go/v5/kcp.go')
-rw-r--r-- | vendor/github.com/xtaci/kcp-go/v5/kcp.go | 1080 |
1 files changed, 1080 insertions, 0 deletions
diff --git a/vendor/github.com/xtaci/kcp-go/v5/kcp.go b/vendor/github.com/xtaci/kcp-go/v5/kcp.go new file mode 100644 index 0000000..0c6c304 --- /dev/null +++ b/vendor/github.com/xtaci/kcp-go/v5/kcp.go @@ -0,0 +1,1080 @@ +package kcp + +import ( + "encoding/binary" + "sync/atomic" + "time" +) + +const ( + IKCP_RTO_NDL = 30 // no delay min rto + IKCP_RTO_MIN = 100 // normal min rto + IKCP_RTO_DEF = 200 + IKCP_RTO_MAX = 60000 + IKCP_CMD_PUSH = 81 // cmd: push data + IKCP_CMD_ACK = 82 // cmd: ack + IKCP_CMD_WASK = 83 // cmd: window probe (ask) + IKCP_CMD_WINS = 84 // cmd: window size (tell) + IKCP_ASK_SEND = 1 // need to send IKCP_CMD_WASK + IKCP_ASK_TELL = 2 // need to send IKCP_CMD_WINS + IKCP_WND_SND = 32 + IKCP_WND_RCV = 32 + IKCP_MTU_DEF = 1400 + IKCP_ACK_FAST = 3 + IKCP_INTERVAL = 100 + IKCP_OVERHEAD = 24 + IKCP_DEADLINK = 20 + IKCP_THRESH_INIT = 2 + IKCP_THRESH_MIN = 2 + IKCP_PROBE_INIT = 7000 // 7 secs to probe window size + IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window + IKCP_SN_OFFSET = 12 +) + +// monotonic reference time point +var refTime time.Time = time.Now() + +// currentMs returns current elapsed monotonic milliseconds since program startup +func currentMs() uint32 { return uint32(time.Since(refTime) / time.Millisecond) } + +// output_callback is a prototype which ought capture conn and call conn.Write +type output_callback func(buf []byte, size int) + +/* encode 8 bits unsigned int */ +func ikcp_encode8u(p []byte, c byte) []byte { + p[0] = c + return p[1:] +} + +/* decode 8 bits unsigned int */ +func ikcp_decode8u(p []byte, c *byte) []byte { + *c = p[0] + return p[1:] +} + +/* encode 16 bits unsigned int (lsb) */ +func ikcp_encode16u(p []byte, w uint16) []byte { + binary.LittleEndian.PutUint16(p, w) + return p[2:] +} + +/* decode 16 bits unsigned int (lsb) */ +func ikcp_decode16u(p []byte, w *uint16) []byte { + *w = binary.LittleEndian.Uint16(p) + return p[2:] +} + +/* encode 32 bits unsigned int (lsb) */ +func ikcp_encode32u(p []byte, l uint32) []byte { + binary.LittleEndian.PutUint32(p, l) + return p[4:] +} + +/* decode 32 bits unsigned int (lsb) */ +func ikcp_decode32u(p []byte, l *uint32) []byte { + *l = binary.LittleEndian.Uint32(p) + return p[4:] +} + +func _imin_(a, b uint32) uint32 { + if a <= b { + return a + } + return b +} + +func _imax_(a, b uint32) uint32 { + if a >= b { + return a + } + return b +} + +func _ibound_(lower, middle, upper uint32) uint32 { + return _imin_(_imax_(lower, middle), upper) +} + +func _itimediff(later, earlier uint32) int32 { + return (int32)(later - earlier) +} + +// segment defines a KCP segment +type segment struct { + conv uint32 + cmd uint8 + frg uint8 + wnd uint16 + ts uint32 + sn uint32 + una uint32 + rto uint32 + xmit uint32 + resendts uint32 + fastack uint32 + acked uint32 // mark if the seg has acked + data []byte +} + +// encode a segment into buffer +func (seg *segment) encode(ptr []byte) []byte { + ptr = ikcp_encode32u(ptr, seg.conv) + ptr = ikcp_encode8u(ptr, seg.cmd) + ptr = ikcp_encode8u(ptr, seg.frg) + ptr = ikcp_encode16u(ptr, seg.wnd) + ptr = ikcp_encode32u(ptr, seg.ts) + ptr = ikcp_encode32u(ptr, seg.sn) + ptr = ikcp_encode32u(ptr, seg.una) + ptr = ikcp_encode32u(ptr, uint32(len(seg.data))) + atomic.AddUint64(&DefaultSnmp.OutSegs, 1) + return ptr +} + +// KCP defines a single KCP connection +type KCP struct { + conv, mtu, mss, state uint32 + snd_una, snd_nxt, rcv_nxt uint32 + ssthresh uint32 + rx_rttvar, rx_srtt int32 + rx_rto, rx_minrto uint32 + snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32 + interval, ts_flush uint32 + nodelay, updated uint32 + ts_probe, probe_wait uint32 + dead_link, incr uint32 + + fastresend int32 + nocwnd, stream int32 + + snd_queue []segment + rcv_queue []segment + snd_buf []segment + rcv_buf []segment + + acklist []ackItem + + buffer []byte + reserved int + output output_callback +} + +type ackItem struct { + sn uint32 + ts uint32 +} + +// NewKCP create a new kcp state machine +// +// 'conv' must be equal in the connection peers, or else data will be silently rejected. +// +// 'output' function will be called whenever these is data to be sent on wire. +func NewKCP(conv uint32, output output_callback) *KCP { + kcp := new(KCP) + kcp.conv = conv + kcp.snd_wnd = IKCP_WND_SND + kcp.rcv_wnd = IKCP_WND_RCV + kcp.rmt_wnd = IKCP_WND_RCV + kcp.mtu = IKCP_MTU_DEF + kcp.mss = kcp.mtu - IKCP_OVERHEAD + kcp.buffer = make([]byte, kcp.mtu) + kcp.rx_rto = IKCP_RTO_DEF + kcp.rx_minrto = IKCP_RTO_MIN + kcp.interval = IKCP_INTERVAL + kcp.ts_flush = IKCP_INTERVAL + kcp.ssthresh = IKCP_THRESH_INIT + kcp.dead_link = IKCP_DEADLINK + kcp.output = output + return kcp +} + +// newSegment creates a KCP segment +func (kcp *KCP) newSegment(size int) (seg segment) { + seg.data = xmitBuf.Get().([]byte)[:size] + return +} + +// delSegment recycles a KCP segment +func (kcp *KCP) delSegment(seg *segment) { + if seg.data != nil { + xmitBuf.Put(seg.data) + seg.data = nil + } +} + +// ReserveBytes keeps n bytes untouched from the beginning of the buffer, +// the output_callback function should be aware of this. +// +// Return false if n >= mss +func (kcp *KCP) ReserveBytes(n int) bool { + if n >= int(kcp.mtu-IKCP_OVERHEAD) || n < 0 { + return false + } + kcp.reserved = n + kcp.mss = kcp.mtu - IKCP_OVERHEAD - uint32(n) + return true +} + +// PeekSize checks the size of next message in the recv queue +func (kcp *KCP) PeekSize() (length int) { + if len(kcp.rcv_queue) == 0 { + return -1 + } + + seg := &kcp.rcv_queue[0] + if seg.frg == 0 { + return len(seg.data) + } + + if len(kcp.rcv_queue) < int(seg.frg+1) { + return -1 + } + + for k := range kcp.rcv_queue { + seg := &kcp.rcv_queue[k] + length += len(seg.data) + if seg.frg == 0 { + break + } + } + return +} + +// Receive data from kcp state machine +// +// Return number of bytes read. +// +// Return -1 when there is no readable data. +// +// Return -2 if len(buffer) is smaller than kcp.PeekSize(). +func (kcp *KCP) Recv(buffer []byte) (n int) { + peeksize := kcp.PeekSize() + if peeksize < 0 { + return -1 + } + + if peeksize > len(buffer) { + return -2 + } + + var fast_recover bool + if len(kcp.rcv_queue) >= int(kcp.rcv_wnd) { + fast_recover = true + } + + // merge fragment + count := 0 + for k := range kcp.rcv_queue { + seg := &kcp.rcv_queue[k] + copy(buffer, seg.data) + buffer = buffer[len(seg.data):] + n += len(seg.data) + count++ + kcp.delSegment(seg) + if seg.frg == 0 { + break + } + } + if count > 0 { + kcp.rcv_queue = kcp.remove_front(kcp.rcv_queue, count) + } + + // move available data from rcv_buf -> rcv_queue + count = 0 + for k := range kcp.rcv_buf { + seg := &kcp.rcv_buf[k] + if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue)+count < int(kcp.rcv_wnd) { + kcp.rcv_nxt++ + count++ + } else { + break + } + } + + if count > 0 { + kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...) + kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count) + } + + // fast recover + if len(kcp.rcv_queue) < int(kcp.rcv_wnd) && fast_recover { + // ready to send back IKCP_CMD_WINS in ikcp_flush + // tell remote my window size + kcp.probe |= IKCP_ASK_TELL + } + return +} + +// Send is user/upper level send, returns below zero for error +func (kcp *KCP) Send(buffer []byte) int { + var count int + if len(buffer) == 0 { + return -1 + } + + // append to previous segment in streaming mode (if possible) + if kcp.stream != 0 { + n := len(kcp.snd_queue) + if n > 0 { + seg := &kcp.snd_queue[n-1] + if len(seg.data) < int(kcp.mss) { + capacity := int(kcp.mss) - len(seg.data) + extend := capacity + if len(buffer) < capacity { + extend = len(buffer) + } + + // grow slice, the underlying cap is guaranteed to + // be larger than kcp.mss + oldlen := len(seg.data) + seg.data = seg.data[:oldlen+extend] + copy(seg.data[oldlen:], buffer) + buffer = buffer[extend:] + } + } + + if len(buffer) == 0 { + return 0 + } + } + + if len(buffer) <= int(kcp.mss) { + count = 1 + } else { + count = (len(buffer) + int(kcp.mss) - 1) / int(kcp.mss) + } + + if count > 255 { + return -2 + } + + if count == 0 { + count = 1 + } + + for i := 0; i < count; i++ { + var size int + if len(buffer) > int(kcp.mss) { + size = int(kcp.mss) + } else { + size = len(buffer) + } + seg := kcp.newSegment(size) + copy(seg.data, buffer[:size]) + if kcp.stream == 0 { // message mode + seg.frg = uint8(count - i - 1) + } else { // stream mode + seg.frg = 0 + } + kcp.snd_queue = append(kcp.snd_queue, seg) + buffer = buffer[size:] + } + return 0 +} + +func (kcp *KCP) update_ack(rtt int32) { + // https://tools.ietf.org/html/rfc6298 + var rto uint32 + if kcp.rx_srtt == 0 { + kcp.rx_srtt = rtt + kcp.rx_rttvar = rtt >> 1 + } else { + delta := rtt - kcp.rx_srtt + kcp.rx_srtt += delta >> 3 + if delta < 0 { + delta = -delta + } + if rtt < kcp.rx_srtt-kcp.rx_rttvar { + // if the new RTT sample is below the bottom of the range of + // what an RTT measurement is expected to be. + // give an 8x reduced weight versus its normal weighting + kcp.rx_rttvar += (delta - kcp.rx_rttvar) >> 5 + } else { + kcp.rx_rttvar += (delta - kcp.rx_rttvar) >> 2 + } + } + rto = uint32(kcp.rx_srtt) + _imax_(kcp.interval, uint32(kcp.rx_rttvar)<<2) + kcp.rx_rto = _ibound_(kcp.rx_minrto, rto, IKCP_RTO_MAX) +} + +func (kcp *KCP) shrink_buf() { + if len(kcp.snd_buf) > 0 { + seg := &kcp.snd_buf[0] + kcp.snd_una = seg.sn + } else { + kcp.snd_una = kcp.snd_nxt + } +} + +func (kcp *KCP) parse_ack(sn uint32) { + if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 { + return + } + + for k := range kcp.snd_buf { + seg := &kcp.snd_buf[k] + if sn == seg.sn { + // mark and free space, but leave the segment here, + // and wait until `una` to delete this, then we don't + // have to shift the segments behind forward, + // which is an expensive operation for large window + seg.acked = 1 + kcp.delSegment(seg) + break + } + if _itimediff(sn, seg.sn) < 0 { + break + } + } +} + +func (kcp *KCP) parse_fastack(sn, ts uint32) { + if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 { + return + } + + for k := range kcp.snd_buf { + seg := &kcp.snd_buf[k] + if _itimediff(sn, seg.sn) < 0 { + break + } else if sn != seg.sn && _itimediff(seg.ts, ts) <= 0 { + seg.fastack++ + } + } +} + +func (kcp *KCP) parse_una(una uint32) int { + count := 0 + for k := range kcp.snd_buf { + seg := &kcp.snd_buf[k] + if _itimediff(una, seg.sn) > 0 { + kcp.delSegment(seg) + count++ + } else { + break + } + } + if count > 0 { + kcp.snd_buf = kcp.remove_front(kcp.snd_buf, count) + } + return count +} + +// ack append +func (kcp *KCP) ack_push(sn, ts uint32) { + kcp.acklist = append(kcp.acklist, ackItem{sn, ts}) +} + +// returns true if data has repeated +func (kcp *KCP) parse_data(newseg segment) bool { + sn := newseg.sn + if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 || + _itimediff(sn, kcp.rcv_nxt) < 0 { + return true + } + + n := len(kcp.rcv_buf) - 1 + insert_idx := 0 + repeat := false + for i := n; i >= 0; i-- { + seg := &kcp.rcv_buf[i] + if seg.sn == sn { + repeat = true + break + } + if _itimediff(sn, seg.sn) > 0 { + insert_idx = i + 1 + break + } + } + + if !repeat { + // replicate the content if it's new + dataCopy := xmitBuf.Get().([]byte)[:len(newseg.data)] + copy(dataCopy, newseg.data) + newseg.data = dataCopy + + if insert_idx == n+1 { + kcp.rcv_buf = append(kcp.rcv_buf, newseg) + } else { + kcp.rcv_buf = append(kcp.rcv_buf, segment{}) + copy(kcp.rcv_buf[insert_idx+1:], kcp.rcv_buf[insert_idx:]) + kcp.rcv_buf[insert_idx] = newseg + } + } + + // move available data from rcv_buf -> rcv_queue + count := 0 + for k := range kcp.rcv_buf { + seg := &kcp.rcv_buf[k] + if seg.sn == kcp.rcv_nxt && len(kcp.rcv_queue)+count < int(kcp.rcv_wnd) { + kcp.rcv_nxt++ + count++ + } else { + break + } + } + if count > 0 { + kcp.rcv_queue = append(kcp.rcv_queue, kcp.rcv_buf[:count]...) + kcp.rcv_buf = kcp.remove_front(kcp.rcv_buf, count) + } + + return repeat +} + +// Input a packet into kcp state machine. +// +// 'regular' indicates it's a real data packet from remote, and it means it's not generated from ReedSolomon +// codecs. +// +// 'ackNoDelay' will trigger immediate ACK, but surely it will not be efficient in bandwidth +func (kcp *KCP) Input(data []byte, regular, ackNoDelay bool) int { + snd_una := kcp.snd_una + if len(data) < IKCP_OVERHEAD { + return -1 + } + + var latest uint32 // the latest ack packet + var flag int + var inSegs uint64 + var windowSlides bool + + for { + var ts, sn, length, una, conv uint32 + var wnd uint16 + var cmd, frg uint8 + + if len(data) < int(IKCP_OVERHEAD) { + break + } + + data = ikcp_decode32u(data, &conv) + if conv != kcp.conv { + return -1 + } + + data = ikcp_decode8u(data, &cmd) + data = ikcp_decode8u(data, &frg) + data = ikcp_decode16u(data, &wnd) + data = ikcp_decode32u(data, &ts) + data = ikcp_decode32u(data, &sn) + data = ikcp_decode32u(data, &una) + data = ikcp_decode32u(data, &length) + if len(data) < int(length) { + return -2 + } + + if cmd != IKCP_CMD_PUSH && cmd != IKCP_CMD_ACK && + cmd != IKCP_CMD_WASK && cmd != IKCP_CMD_WINS { + return -3 + } + + // only trust window updates from regular packets. i.e: latest update + if regular { + kcp.rmt_wnd = uint32(wnd) + } + if kcp.parse_una(una) > 0 { + windowSlides = true + } + kcp.shrink_buf() + + if cmd == IKCP_CMD_ACK { + kcp.parse_ack(sn) + kcp.parse_fastack(sn, ts) + flag |= 1 + latest = ts + } else if cmd == IKCP_CMD_PUSH { + repeat := true + if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) < 0 { + kcp.ack_push(sn, ts) + if _itimediff(sn, kcp.rcv_nxt) >= 0 { + var seg segment + seg.conv = conv + seg.cmd = cmd + seg.frg = frg + seg.wnd = wnd + seg.ts = ts + seg.sn = sn + seg.una = una + seg.data = data[:length] // delayed data copying + repeat = kcp.parse_data(seg) + } + } + if regular && repeat { + atomic.AddUint64(&DefaultSnmp.RepeatSegs, 1) + } + } else if cmd == IKCP_CMD_WASK { + // ready to send back IKCP_CMD_WINS in Ikcp_flush + // tell remote my window size + kcp.probe |= IKCP_ASK_TELL + } else if cmd == IKCP_CMD_WINS { + // do nothing + } else { + return -3 + } + + inSegs++ + data = data[length:] + } + atomic.AddUint64(&DefaultSnmp.InSegs, inSegs) + + // update rtt with the latest ts + // ignore the FEC packet + if flag != 0 && regular { + current := currentMs() + if _itimediff(current, latest) >= 0 { + kcp.update_ack(_itimediff(current, latest)) + } + } + + // cwnd update when packet arrived + if kcp.nocwnd == 0 { + if _itimediff(kcp.snd_una, snd_una) > 0 { + if kcp.cwnd < kcp.rmt_wnd { + mss := kcp.mss + if kcp.cwnd < kcp.ssthresh { + kcp.cwnd++ + kcp.incr += mss + } else { + if kcp.incr < mss { + kcp.incr = mss + } + kcp.incr += (mss*mss)/kcp.incr + (mss / 16) + if (kcp.cwnd+1)*mss <= kcp.incr { + if mss > 0 { + kcp.cwnd = (kcp.incr + mss - 1) / mss + } else { + kcp.cwnd = kcp.incr + mss - 1 + } + } + } + if kcp.cwnd > kcp.rmt_wnd { + kcp.cwnd = kcp.rmt_wnd + kcp.incr = kcp.rmt_wnd * mss + } + } + } + } + + if windowSlides { // if window has slided, flush + kcp.flush(false) + } else if ackNoDelay && len(kcp.acklist) > 0 { // ack immediately + kcp.flush(true) + } + return 0 +} + +func (kcp *KCP) wnd_unused() uint16 { + if len(kcp.rcv_queue) < int(kcp.rcv_wnd) { + return uint16(int(kcp.rcv_wnd) - len(kcp.rcv_queue)) + } + return 0 +} + +// flush pending data +func (kcp *KCP) flush(ackOnly bool) uint32 { + var seg segment + seg.conv = kcp.conv + seg.cmd = IKCP_CMD_ACK + seg.wnd = kcp.wnd_unused() + seg.una = kcp.rcv_nxt + + buffer := kcp.buffer + ptr := buffer[kcp.reserved:] // keep n bytes untouched + + // makeSpace makes room for writing + makeSpace := func(space int) { + size := len(buffer) - len(ptr) + if size+space > int(kcp.mtu) { + kcp.output(buffer, size) + ptr = buffer[kcp.reserved:] + } + } + + // flush bytes in buffer if there is any + flushBuffer := func() { + size := len(buffer) - len(ptr) + if size > kcp.reserved { + kcp.output(buffer, size) + } + } + + // flush acknowledges + for i, ack := range kcp.acklist { + makeSpace(IKCP_OVERHEAD) + // filter jitters caused by bufferbloat + if _itimediff(ack.sn, kcp.rcv_nxt) >= 0 || len(kcp.acklist)-1 == i { + seg.sn, seg.ts = ack.sn, ack.ts + ptr = seg.encode(ptr) + } + } + kcp.acklist = kcp.acklist[0:0] + + if ackOnly { // flash remain ack segments + flushBuffer() + return kcp.interval + } + + // probe window size (if remote window size equals zero) + if kcp.rmt_wnd == 0 { + current := currentMs() + if kcp.probe_wait == 0 { + kcp.probe_wait = IKCP_PROBE_INIT + kcp.ts_probe = current + kcp.probe_wait + } else { + if _itimediff(current, kcp.ts_probe) >= 0 { + if kcp.probe_wait < IKCP_PROBE_INIT { + kcp.probe_wait = IKCP_PROBE_INIT + } + kcp.probe_wait += kcp.probe_wait / 2 + if kcp.probe_wait > IKCP_PROBE_LIMIT { + kcp.probe_wait = IKCP_PROBE_LIMIT + } + kcp.ts_probe = current + kcp.probe_wait + kcp.probe |= IKCP_ASK_SEND + } + } + } else { + kcp.ts_probe = 0 + kcp.probe_wait = 0 + } + + // flush window probing commands + if (kcp.probe & IKCP_ASK_SEND) != 0 { + seg.cmd = IKCP_CMD_WASK + makeSpace(IKCP_OVERHEAD) + ptr = seg.encode(ptr) + } + + // flush window probing commands + if (kcp.probe & IKCP_ASK_TELL) != 0 { + seg.cmd = IKCP_CMD_WINS + makeSpace(IKCP_OVERHEAD) + ptr = seg.encode(ptr) + } + + kcp.probe = 0 + + // calculate window size + cwnd := _imin_(kcp.snd_wnd, kcp.rmt_wnd) + if kcp.nocwnd == 0 { + cwnd = _imin_(kcp.cwnd, cwnd) + } + + // sliding window, controlled by snd_nxt && sna_una+cwnd + newSegsCount := 0 + for k := range kcp.snd_queue { + if _itimediff(kcp.snd_nxt, kcp.snd_una+cwnd) >= 0 { + break + } + newseg := kcp.snd_queue[k] + newseg.conv = kcp.conv + newseg.cmd = IKCP_CMD_PUSH + newseg.sn = kcp.snd_nxt + kcp.snd_buf = append(kcp.snd_buf, newseg) + kcp.snd_nxt++ + newSegsCount++ + } + if newSegsCount > 0 { + kcp.snd_queue = kcp.remove_front(kcp.snd_queue, newSegsCount) + } + + // calculate resent + resent := uint32(kcp.fastresend) + if kcp.fastresend <= 0 { + resent = 0xffffffff + } + + // check for retransmissions + current := currentMs() + var change, lostSegs, fastRetransSegs, earlyRetransSegs uint64 + minrto := int32(kcp.interval) + + ref := kcp.snd_buf[:len(kcp.snd_buf)] // for bounds check elimination + for k := range ref { + segment := &ref[k] + needsend := false + if segment.acked == 1 { + continue + } + if segment.xmit == 0 { // initial transmit + needsend = true + segment.rto = kcp.rx_rto + segment.resendts = current + segment.rto + } else if segment.fastack >= resent { // fast retransmit + needsend = true + segment.fastack = 0 + segment.rto = kcp.rx_rto + segment.resendts = current + segment.rto + change++ + fastRetransSegs++ + } else if segment.fastack > 0 && newSegsCount == 0 { // early retransmit + needsend = true + segment.fastack = 0 + segment.rto = kcp.rx_rto + segment.resendts = current + segment.rto + change++ + earlyRetransSegs++ + } else if _itimediff(current, segment.resendts) >= 0 { // RTO + needsend = true + if kcp.nodelay == 0 { + segment.rto += kcp.rx_rto + } else { + segment.rto += kcp.rx_rto / 2 + } + segment.fastack = 0 + segment.resendts = current + segment.rto + lostSegs++ + } + + if needsend { + current = currentMs() + segment.xmit++ + segment.ts = current + segment.wnd = seg.wnd + segment.una = seg.una + + need := IKCP_OVERHEAD + len(segment.data) + makeSpace(need) + ptr = segment.encode(ptr) + copy(ptr, segment.data) + ptr = ptr[len(segment.data):] + + if segment.xmit >= kcp.dead_link { + kcp.state = 0xFFFFFFFF + } + } + + // get the nearest rto + if rto := _itimediff(segment.resendts, current); rto > 0 && rto < minrto { + minrto = rto + } + } + + // flash remain segments + flushBuffer() + + // counter updates + sum := lostSegs + if lostSegs > 0 { + atomic.AddUint64(&DefaultSnmp.LostSegs, lostSegs) + } + if fastRetransSegs > 0 { + atomic.AddUint64(&DefaultSnmp.FastRetransSegs, fastRetransSegs) + sum += fastRetransSegs + } + if earlyRetransSegs > 0 { + atomic.AddUint64(&DefaultSnmp.EarlyRetransSegs, earlyRetransSegs) + sum += earlyRetransSegs + } + if sum > 0 { + atomic.AddUint64(&DefaultSnmp.RetransSegs, sum) + } + + // cwnd update + if kcp.nocwnd == 0 { + // update ssthresh + // rate halving, https://tools.ietf.org/html/rfc6937 + if change > 0 { + inflight := kcp.snd_nxt - kcp.snd_una + kcp.ssthresh = inflight / 2 + if kcp.ssthresh < IKCP_THRESH_MIN { + kcp.ssthresh = IKCP_THRESH_MIN + } + kcp.cwnd = kcp.ssthresh + resent + kcp.incr = kcp.cwnd * kcp.mss + } + + // congestion control, https://tools.ietf.org/html/rfc5681 + if lostSegs > 0 { + kcp.ssthresh = cwnd / 2 + if kcp.ssthresh < IKCP_THRESH_MIN { + kcp.ssthresh = IKCP_THRESH_MIN + } + kcp.cwnd = 1 + kcp.incr = kcp.mss + } + + if kcp.cwnd < 1 { + kcp.cwnd = 1 + kcp.incr = kcp.mss + } + } + + return uint32(minrto) +} + +// (deprecated) +// +// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask +// ikcp_check when to call it again (without ikcp_input/_send calling). +// 'current' - current timestamp in millisec. +func (kcp *KCP) Update() { + var slap int32 + + current := currentMs() + if kcp.updated == 0 { + kcp.updated = 1 + kcp.ts_flush = current + } + + slap = _itimediff(current, kcp.ts_flush) + + if slap >= 10000 || slap < -10000 { + kcp.ts_flush = current + slap = 0 + } + + if slap >= 0 { + kcp.ts_flush += kcp.interval + if _itimediff(current, kcp.ts_flush) >= 0 { + kcp.ts_flush = current + kcp.interval + } + kcp.flush(false) + } +} + +// (deprecated) +// +// Check determines when should you invoke ikcp_update: +// returns when you should invoke ikcp_update in millisec, if there +// is no ikcp_input/_send calling. you can call ikcp_update in that +// time, instead of call update repeatly. +// Important to reduce unnacessary ikcp_update invoking. use it to +// schedule ikcp_update (eg. implementing an epoll-like mechanism, +// or optimize ikcp_update when handling massive kcp connections) +func (kcp *KCP) Check() uint32 { + current := currentMs() + ts_flush := kcp.ts_flush + tm_flush := int32(0x7fffffff) + tm_packet := int32(0x7fffffff) + minimal := uint32(0) + if kcp.updated == 0 { + return current + } + + if _itimediff(current, ts_flush) >= 10000 || + _itimediff(current, ts_flush) < -10000 { + ts_flush = current + } + + if _itimediff(current, ts_flush) >= 0 { + return current + } + + tm_flush = _itimediff(ts_flush, current) + + for k := range kcp.snd_buf { + seg := &kcp.snd_buf[k] + diff := _itimediff(seg.resendts, current) + if diff <= 0 { + return current + } + if diff < tm_packet { + tm_packet = diff + } + } + + minimal = uint32(tm_packet) + if tm_packet >= tm_flush { + minimal = uint32(tm_flush) + } + if minimal >= kcp.interval { + minimal = kcp.interval + } + + return current + minimal +} + +// SetMtu changes MTU size, default is 1400 +func (kcp *KCP) SetMtu(mtu int) int { + if mtu < 50 || mtu < IKCP_OVERHEAD { + return -1 + } + if kcp.reserved >= int(kcp.mtu-IKCP_OVERHEAD) || kcp.reserved < 0 { + return -1 + } + + buffer := make([]byte, mtu) + if buffer == nil { + return -2 + } + kcp.mtu = uint32(mtu) + kcp.mss = kcp.mtu - IKCP_OVERHEAD - uint32(kcp.reserved) + kcp.buffer = buffer + return 0 +} + +// NoDelay options +// fastest: ikcp_nodelay(kcp, 1, 20, 2, 1) +// nodelay: 0:disable(default), 1:enable +// interval: internal update timer interval in millisec, default is 100ms +// resend: 0:disable fast resend(default), 1:enable fast resend +// nc: 0:normal congestion control(default), 1:disable congestion control +func (kcp *KCP) NoDelay(nodelay, interval, resend, nc int) int { + if nodelay >= 0 { + kcp.nodelay = uint32(nodelay) + if nodelay != 0 { + kcp.rx_minrto = IKCP_RTO_NDL + } else { + kcp.rx_minrto = IKCP_RTO_MIN + } + } + if interval >= 0 { + if interval > 5000 { + interval = 5000 + } else if interval < 10 { + interval = 10 + } + kcp.interval = uint32(interval) + } + if resend >= 0 { + kcp.fastresend = int32(resend) + } + if nc >= 0 { + kcp.nocwnd = int32(nc) + } + return 0 +} + +// WndSize sets maximum window size: sndwnd=32, rcvwnd=32 by default +func (kcp *KCP) WndSize(sndwnd, rcvwnd int) int { + if sndwnd > 0 { + kcp.snd_wnd = uint32(sndwnd) + } + if rcvwnd > 0 { + kcp.rcv_wnd = uint32(rcvwnd) + } + return 0 +} + +// WaitSnd gets how many packet is waiting to be sent +func (kcp *KCP) WaitSnd() int { + return len(kcp.snd_buf) + len(kcp.snd_queue) +} + +// remove front n elements from queue +// if the number of elements to remove is more than half of the size. +// just shift the rear elements to front, otherwise just reslice q to q[n:] +// then the cost of runtime.growslice can always be less than n/2 +func (kcp *KCP) remove_front(q []segment, n int) []segment { + if n > cap(q)/2 { + newn := copy(q, q[n:]) + return q[:newn] + } + return q[n:] +} + +// Release all cached outgoing segments +func (kcp *KCP) ReleaseTX() { + for k := range kcp.snd_queue { + if kcp.snd_queue[k].data != nil { + xmitBuf.Put(kcp.snd_queue[k].data) + } + } + for k := range kcp.snd_buf { + if kcp.snd_buf[k].data != nil { + xmitBuf.Put(kcp.snd_buf[k].data) + } + } + kcp.snd_queue = nil + kcp.snd_buf = nil +} |