summaryrefslogtreecommitdiff
path: root/vendor/github.com/klauspost/cpuid/cpuid.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/klauspost/cpuid/cpuid.go')
-rw-r--r--vendor/github.com/klauspost/cpuid/cpuid.go1504
1 files changed, 1504 insertions, 0 deletions
diff --git a/vendor/github.com/klauspost/cpuid/cpuid.go b/vendor/github.com/klauspost/cpuid/cpuid.go
new file mode 100644
index 0000000..208b3e7
--- /dev/null
+++ b/vendor/github.com/klauspost/cpuid/cpuid.go
@@ -0,0 +1,1504 @@
+// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
+
+// Package cpuid provides information about the CPU running the current program.
+//
+// CPU features are detected on startup, and kept for fast access through the life of the application.
+// Currently x86 / x64 (AMD64) as well as arm64 is supported.
+//
+// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
+//
+// Package home: https://github.com/klauspost/cpuid
+package cpuid
+
+import (
+ "math"
+ "strings"
+)
+
+// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
+// and Processor Programming Reference (PPR)
+
+// Vendor is a representation of a CPU vendor.
+type Vendor int
+
+const (
+ Other Vendor = iota
+ Intel
+ AMD
+ VIA
+ Transmeta
+ NSC
+ KVM // Kernel-based Virtual Machine
+ MSVM // Microsoft Hyper-V or Windows Virtual PC
+ VMware
+ XenHVM
+ Bhyve
+ Hygon
+ SiS
+ RDC
+)
+
+const (
+ CMOV = 1 << iota // i686 CMOV
+ NX // NX (No-Execute) bit
+ AMD3DNOW // AMD 3DNOW
+ AMD3DNOWEXT // AMD 3DNowExt
+ MMX // standard MMX
+ MMXEXT // SSE integer functions or AMD MMX ext
+ SSE // SSE functions
+ SSE2 // P4 SSE functions
+ SSE3 // Prescott SSE3 functions
+ SSSE3 // Conroe SSSE3 functions
+ SSE4 // Penryn SSE4.1 functions
+ SSE4A // AMD Barcelona microarchitecture SSE4a instructions
+ SSE42 // Nehalem SSE4.2 functions
+ AVX // AVX functions
+ AVX2 // AVX2 functions
+ FMA3 // Intel FMA 3
+ FMA4 // Bulldozer FMA4 functions
+ XOP // Bulldozer XOP functions
+ F16C // Half-precision floating-point conversion
+ BMI1 // Bit Manipulation Instruction Set 1
+ BMI2 // Bit Manipulation Instruction Set 2
+ TBM // AMD Trailing Bit Manipulation
+ LZCNT // LZCNT instruction
+ POPCNT // POPCNT instruction
+ AESNI // Advanced Encryption Standard New Instructions
+ CLMUL // Carry-less Multiplication
+ HTT // Hyperthreading (enabled)
+ HLE // Hardware Lock Elision
+ RTM // Restricted Transactional Memory
+ RDRAND // RDRAND instruction is available
+ RDSEED // RDSEED instruction is available
+ ADX // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
+ SHA // Intel SHA Extensions
+ AVX512F // AVX-512 Foundation
+ AVX512DQ // AVX-512 Doubleword and Quadword Instructions
+ AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
+ AVX512PF // AVX-512 Prefetch Instructions
+ AVX512ER // AVX-512 Exponential and Reciprocal Instructions
+ AVX512CD // AVX-512 Conflict Detection Instructions
+ AVX512BW // AVX-512 Byte and Word Instructions
+ AVX512VL // AVX-512 Vector Length Extensions
+ AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
+ AVX512VBMI2 // AVX-512 Vector Bit Manipulation Instructions, Version 2
+ AVX512VNNI // AVX-512 Vector Neural Network Instructions
+ AVX512VPOPCNTDQ // AVX-512 Vector Population Count Doubleword and Quadword
+ GFNI // Galois Field New Instructions
+ VAES // Vector AES
+ AVX512BITALG // AVX-512 Bit Algorithms
+ VPCLMULQDQ // Carry-Less Multiplication Quadword
+ AVX512BF16 // AVX-512 BFLOAT16 Instructions
+ AVX512VP2INTERSECT // AVX-512 Intersect for D/Q
+ MPX // Intel MPX (Memory Protection Extensions)
+ ERMS // Enhanced REP MOVSB/STOSB
+ RDTSCP // RDTSCP Instruction
+ CX16 // CMPXCHG16B Instruction
+ SGX // Software Guard Extensions
+ SGXLC // Software Guard Extensions Launch Control
+ IBPB // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
+ STIBP // Single Thread Indirect Branch Predictors
+ VMX // Virtual Machine Extensions
+
+ // Performance indicators
+ SSE2SLOW // SSE2 is supported, but usually not faster
+ SSE3SLOW // SSE3 is supported, but usually not faster
+ ATOM // Atom processor, some SSSE3 instructions are slower
+)
+
+var flagNames = map[Flags]string{
+ CMOV: "CMOV", // i686 CMOV
+ NX: "NX", // NX (No-Execute) bit
+ AMD3DNOW: "AMD3DNOW", // AMD 3DNOW
+ AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
+ MMX: "MMX", // Standard MMX
+ MMXEXT: "MMXEXT", // SSE integer functions or AMD MMX ext
+ SSE: "SSE", // SSE functions
+ SSE2: "SSE2", // P4 SSE2 functions
+ SSE3: "SSE3", // Prescott SSE3 functions
+ SSSE3: "SSSE3", // Conroe SSSE3 functions
+ SSE4: "SSE4.1", // Penryn SSE4.1 functions
+ SSE4A: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
+ SSE42: "SSE4.2", // Nehalem SSE4.2 functions
+ AVX: "AVX", // AVX functions
+ AVX2: "AVX2", // AVX functions
+ FMA3: "FMA3", // Intel FMA 3
+ FMA4: "FMA4", // Bulldozer FMA4 functions
+ XOP: "XOP", // Bulldozer XOP functions
+ F16C: "F16C", // Half-precision floating-point conversion
+ BMI1: "BMI1", // Bit Manipulation Instruction Set 1
+ BMI2: "BMI2", // Bit Manipulation Instruction Set 2
+ TBM: "TBM", // AMD Trailing Bit Manipulation
+ LZCNT: "LZCNT", // LZCNT instruction
+ POPCNT: "POPCNT", // POPCNT instruction
+ AESNI: "AESNI", // Advanced Encryption Standard New Instructions
+ CLMUL: "CLMUL", // Carry-less Multiplication
+ HTT: "HTT", // Hyperthreading (enabled)
+ HLE: "HLE", // Hardware Lock Elision
+ RTM: "RTM", // Restricted Transactional Memory
+ RDRAND: "RDRAND", // RDRAND instruction is available
+ RDSEED: "RDSEED", // RDSEED instruction is available
+ ADX: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
+ SHA: "SHA", // Intel SHA Extensions
+ AVX512F: "AVX512F", // AVX-512 Foundation
+ AVX512DQ: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
+ AVX512IFMA: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
+ AVX512PF: "AVX512PF", // AVX-512 Prefetch Instructions
+ AVX512ER: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
+ AVX512CD: "AVX512CD", // AVX-512 Conflict Detection Instructions
+ AVX512BW: "AVX512BW", // AVX-512 Byte and Word Instructions
+ AVX512VL: "AVX512VL", // AVX-512 Vector Length Extensions
+ AVX512VBMI: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
+ AVX512VBMI2: "AVX512VBMI2", // AVX-512 Vector Bit Manipulation Instructions, Version 2
+ AVX512VNNI: "AVX512VNNI", // AVX-512 Vector Neural Network Instructions
+ AVX512VPOPCNTDQ: "AVX512VPOPCNTDQ", // AVX-512 Vector Population Count Doubleword and Quadword
+ GFNI: "GFNI", // Galois Field New Instructions
+ VAES: "VAES", // Vector AES
+ AVX512BITALG: "AVX512BITALG", // AVX-512 Bit Algorithms
+ VPCLMULQDQ: "VPCLMULQDQ", // Carry-Less Multiplication Quadword
+ AVX512BF16: "AVX512BF16", // AVX-512 BFLOAT16 Instruction
+ AVX512VP2INTERSECT: "AVX512VP2INTERSECT", // AVX-512 Intersect for D/Q
+ MPX: "MPX", // Intel MPX (Memory Protection Extensions)
+ ERMS: "ERMS", // Enhanced REP MOVSB/STOSB
+ RDTSCP: "RDTSCP", // RDTSCP Instruction
+ CX16: "CX16", // CMPXCHG16B Instruction
+ SGX: "SGX", // Software Guard Extensions
+ SGXLC: "SGXLC", // Software Guard Extensions Launch Control
+ IBPB: "IBPB", // Indirect Branch Restricted Speculation and Indirect Branch Predictor Barrier
+ STIBP: "STIBP", // Single Thread Indirect Branch Predictors
+ VMX: "VMX", // Virtual Machine Extensions
+
+ // Performance indicators
+ SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
+ SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
+ ATOM: "ATOM", // Atom processor, some SSSE3 instructions are slower
+
+}
+
+/* all special features for arm64 should be defined here */
+const (
+ /* extension instructions */
+ FP ArmFlags = 1 << iota
+ ASIMD
+ EVTSTRM
+ AES
+ PMULL
+ SHA1
+ SHA2
+ CRC32
+ ATOMICS
+ FPHP
+ ASIMDHP
+ ARMCPUID
+ ASIMDRDM
+ JSCVT
+ FCMA
+ LRCPC
+ DCPOP
+ SHA3
+ SM3
+ SM4
+ ASIMDDP
+ SHA512
+ SVE
+ GPA
+)
+
+var flagNamesArm = map[ArmFlags]string{
+ FP: "FP", // Single-precision and double-precision floating point
+ ASIMD: "ASIMD", // Advanced SIMD
+ EVTSTRM: "EVTSTRM", // Generic timer
+ AES: "AES", // AES instructions
+ PMULL: "PMULL", // Polynomial Multiply instructions (PMULL/PMULL2)
+ SHA1: "SHA1", // SHA-1 instructions (SHA1C, etc)
+ SHA2: "SHA2", // SHA-2 instructions (SHA256H, etc)
+ CRC32: "CRC32", // CRC32/CRC32C instructions
+ ATOMICS: "ATOMICS", // Large System Extensions (LSE)
+ FPHP: "FPHP", // Half-precision floating point
+ ASIMDHP: "ASIMDHP", // Advanced SIMD half-precision floating point
+ ARMCPUID: "CPUID", // Some CPU ID registers readable at user-level
+ ASIMDRDM: "ASIMDRDM", // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
+ JSCVT: "JSCVT", // Javascript-style double->int convert (FJCVTZS)
+ FCMA: "FCMA", // Floatin point complex number addition and multiplication
+ LRCPC: "LRCPC", // Weaker release consistency (LDAPR, etc)
+ DCPOP: "DCPOP", // Data cache clean to Point of Persistence (DC CVAP)
+ SHA3: "SHA3", // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
+ SM3: "SM3", // SM3 instructions
+ SM4: "SM4", // SM4 instructions
+ ASIMDDP: "ASIMDDP", // SIMD Dot Product
+ SHA512: "SHA512", // SHA512 instructions
+ SVE: "SVE", // Scalable Vector Extension
+ GPA: "GPA", // Generic Pointer Authentication
+}
+
+// CPUInfo contains information about the detected system CPU.
+type CPUInfo struct {
+ BrandName string // Brand name reported by the CPU
+ VendorID Vendor // Comparable CPU vendor ID
+ VendorString string // Raw vendor string.
+ Features Flags // Features of the CPU (x64)
+ Arm ArmFlags // Features of the CPU (arm)
+ PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
+ ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
+ LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
+ Family int // CPU family number
+ Model int // CPU model number
+ CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
+ Hz int64 // Clock speed, if known
+ Cache struct {
+ L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
+ L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
+ L2 int // L2 Cache (per core or shared). Will be -1 if undetected
+ L3 int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
+ }
+ SGX SGXSupport
+ maxFunc uint32
+ maxExFunc uint32
+}
+
+var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
+var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
+var xgetbv func(index uint32) (eax, edx uint32)
+var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
+
+// CPU contains information about the CPU as detected on startup,
+// or when Detect last was called.
+//
+// Use this as the primary entry point to you data.
+var CPU CPUInfo
+
+func init() {
+ initCPU()
+ Detect()
+}
+
+// Detect will re-detect current CPU info.
+// This will replace the content of the exported CPU variable.
+//
+// Unless you expect the CPU to change while you are running your program
+// you should not need to call this function.
+// If you call this, you must ensure that no other goroutine is accessing the
+// exported CPU variable.
+func Detect() {
+ // Set defaults
+ CPU.ThreadsPerCore = 1
+ CPU.Cache.L1I = -1
+ CPU.Cache.L1D = -1
+ CPU.Cache.L2 = -1
+ CPU.Cache.L3 = -1
+ addInfo(&CPU)
+}
+
+// Generated here: http://play.golang.org/p/BxFH2Gdc0G
+
+// Cmov indicates support of CMOV instructions
+func (c CPUInfo) Cmov() bool {
+ return c.Features&CMOV != 0
+}
+
+// Amd3dnow indicates support of AMD 3DNOW! instructions
+func (c CPUInfo) Amd3dnow() bool {
+ return c.Features&AMD3DNOW != 0
+}
+
+// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
+func (c CPUInfo) Amd3dnowExt() bool {
+ return c.Features&AMD3DNOWEXT != 0
+}
+
+// VMX indicates support of VMX
+func (c CPUInfo) VMX() bool {
+ return c.Features&VMX != 0
+}
+
+// MMX indicates support of MMX instructions
+func (c CPUInfo) MMX() bool {
+ return c.Features&MMX != 0
+}
+
+// MMXExt indicates support of MMXEXT instructions
+// (SSE integer functions or AMD MMX ext)
+func (c CPUInfo) MMXExt() bool {
+ return c.Features&MMXEXT != 0
+}
+
+// SSE indicates support of SSE instructions
+func (c CPUInfo) SSE() bool {
+ return c.Features&SSE != 0
+}
+
+// SSE2 indicates support of SSE 2 instructions
+func (c CPUInfo) SSE2() bool {
+ return c.Features&SSE2 != 0
+}
+
+// SSE3 indicates support of SSE 3 instructions
+func (c CPUInfo) SSE3() bool {
+ return c.Features&SSE3 != 0
+}
+
+// SSSE3 indicates support of SSSE 3 instructions
+func (c CPUInfo) SSSE3() bool {
+ return c.Features&SSSE3 != 0
+}
+
+// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
+func (c CPUInfo) SSE4() bool {
+ return c.Features&SSE4 != 0
+}
+
+// SSE42 indicates support of SSE4.2 instructions
+func (c CPUInfo) SSE42() bool {
+ return c.Features&SSE42 != 0
+}
+
+// AVX indicates support of AVX instructions
+// and operating system support of AVX instructions
+func (c CPUInfo) AVX() bool {
+ return c.Features&AVX != 0
+}
+
+// AVX2 indicates support of AVX2 instructions
+func (c CPUInfo) AVX2() bool {
+ return c.Features&AVX2 != 0
+}
+
+// FMA3 indicates support of FMA3 instructions
+func (c CPUInfo) FMA3() bool {
+ return c.Features&FMA3 != 0
+}
+
+// FMA4 indicates support of FMA4 instructions
+func (c CPUInfo) FMA4() bool {
+ return c.Features&FMA4 != 0
+}
+
+// XOP indicates support of XOP instructions
+func (c CPUInfo) XOP() bool {
+ return c.Features&XOP != 0
+}
+
+// F16C indicates support of F16C instructions
+func (c CPUInfo) F16C() bool {
+ return c.Features&F16C != 0
+}
+
+// BMI1 indicates support of BMI1 instructions
+func (c CPUInfo) BMI1() bool {
+ return c.Features&BMI1 != 0
+}
+
+// BMI2 indicates support of BMI2 instructions
+func (c CPUInfo) BMI2() bool {
+ return c.Features&BMI2 != 0
+}
+
+// TBM indicates support of TBM instructions
+// (AMD Trailing Bit Manipulation)
+func (c CPUInfo) TBM() bool {
+ return c.Features&TBM != 0
+}
+
+// Lzcnt indicates support of LZCNT instruction
+func (c CPUInfo) Lzcnt() bool {
+ return c.Features&LZCNT != 0
+}
+
+// Popcnt indicates support of POPCNT instruction
+func (c CPUInfo) Popcnt() bool {
+ return c.Features&POPCNT != 0
+}
+
+// HTT indicates the processor has Hyperthreading enabled
+func (c CPUInfo) HTT() bool {
+ return c.Features&HTT != 0
+}
+
+// SSE2Slow indicates that SSE2 may be slow on this processor
+func (c CPUInfo) SSE2Slow() bool {
+ return c.Features&SSE2SLOW != 0
+}
+
+// SSE3Slow indicates that SSE3 may be slow on this processor
+func (c CPUInfo) SSE3Slow() bool {
+ return c.Features&SSE3SLOW != 0
+}
+
+// AesNi indicates support of AES-NI instructions
+// (Advanced Encryption Standard New Instructions)
+func (c CPUInfo) AesNi() bool {
+ return c.Features&AESNI != 0
+}
+
+// Clmul indicates support of CLMUL instructions
+// (Carry-less Multiplication)
+func (c CPUInfo) Clmul() bool {
+ return c.Features&CLMUL != 0
+}
+
+// NX indicates support of NX (No-Execute) bit
+func (c CPUInfo) NX() bool {
+ return c.Features&NX != 0
+}
+
+// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
+func (c CPUInfo) SSE4A() bool {
+ return c.Features&SSE4A != 0
+}
+
+// HLE indicates support of Hardware Lock Elision
+func (c CPUInfo) HLE() bool {
+ return c.Features&HLE != 0
+}
+
+// RTM indicates support of Restricted Transactional Memory
+func (c CPUInfo) RTM() bool {
+ return c.Features&RTM != 0
+}
+
+// Rdrand indicates support of RDRAND instruction is available
+func (c CPUInfo) Rdrand() bool {
+ return c.Features&RDRAND != 0
+}
+
+// Rdseed indicates support of RDSEED instruction is available
+func (c CPUInfo) Rdseed() bool {
+ return c.Features&RDSEED != 0
+}
+
+// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
+func (c CPUInfo) ADX() bool {
+ return c.Features&ADX != 0
+}
+
+// SHA indicates support of Intel SHA Extensions
+func (c CPUInfo) SHA() bool {
+ return c.Features&SHA != 0
+}
+
+// AVX512F indicates support of AVX-512 Foundation
+func (c CPUInfo) AVX512F() bool {
+ return c.Features&AVX512F != 0
+}
+
+// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
+func (c CPUInfo) AVX512DQ() bool {
+ return c.Features&AVX512DQ != 0
+}
+
+// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
+func (c CPUInfo) AVX512IFMA() bool {
+ return c.Features&AVX512IFMA != 0
+}
+
+// AVX512PF indicates support of AVX-512 Prefetch Instructions
+func (c CPUInfo) AVX512PF() bool {
+ return c.Features&AVX512PF != 0
+}
+
+// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
+func (c CPUInfo) AVX512ER() bool {
+ return c.Features&AVX512ER != 0
+}
+
+// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
+func (c CPUInfo) AVX512CD() bool {
+ return c.Features&AVX512CD != 0
+}
+
+// AVX512BW indicates support of AVX-512 Byte and Word Instructions
+func (c CPUInfo) AVX512BW() bool {
+ return c.Features&AVX512BW != 0
+}
+
+// AVX512VL indicates support of AVX-512 Vector Length Extensions
+func (c CPUInfo) AVX512VL() bool {
+ return c.Features&AVX512VL != 0
+}
+
+// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
+func (c CPUInfo) AVX512VBMI() bool {
+ return c.Features&AVX512VBMI != 0
+}
+
+// AVX512VBMI2 indicates support of AVX-512 Vector Bit Manipulation Instructions, Version 2
+func (c CPUInfo) AVX512VBMI2() bool {
+ return c.Features&AVX512VBMI2 != 0
+}
+
+// AVX512VNNI indicates support of AVX-512 Vector Neural Network Instructions
+func (c CPUInfo) AVX512VNNI() bool {
+ return c.Features&AVX512VNNI != 0
+}
+
+// AVX512VPOPCNTDQ indicates support of AVX-512 Vector Population Count Doubleword and Quadword
+func (c CPUInfo) AVX512VPOPCNTDQ() bool {
+ return c.Features&AVX512VPOPCNTDQ != 0
+}
+
+// GFNI indicates support of Galois Field New Instructions
+func (c CPUInfo) GFNI() bool {
+ return c.Features&GFNI != 0
+}
+
+// VAES indicates support of Vector AES
+func (c CPUInfo) VAES() bool {
+ return c.Features&VAES != 0
+}
+
+// AVX512BITALG indicates support of AVX-512 Bit Algorithms
+func (c CPUInfo) AVX512BITALG() bool {
+ return c.Features&AVX512BITALG != 0
+}
+
+// VPCLMULQDQ indicates support of Carry-Less Multiplication Quadword
+func (c CPUInfo) VPCLMULQDQ() bool {
+ return c.Features&VPCLMULQDQ != 0
+}
+
+// AVX512BF16 indicates support of
+func (c CPUInfo) AVX512BF16() bool {
+ return c.Features&AVX512BF16 != 0
+}
+
+// AVX512VP2INTERSECT indicates support of
+func (c CPUInfo) AVX512VP2INTERSECT() bool {
+ return c.Features&AVX512VP2INTERSECT != 0
+}
+
+// MPX indicates support of Intel MPX (Memory Protection Extensions)
+func (c CPUInfo) MPX() bool {
+ return c.Features&MPX != 0
+}
+
+// ERMS indicates support of Enhanced REP MOVSB/STOSB
+func (c CPUInfo) ERMS() bool {
+ return c.Features&ERMS != 0
+}
+
+// RDTSCP Instruction is available.
+func (c CPUInfo) RDTSCP() bool {
+ return c.Features&RDTSCP != 0
+}
+
+// CX16 indicates if CMPXCHG16B instruction is available.
+func (c CPUInfo) CX16() bool {
+ return c.Features&CX16 != 0
+}
+
+// TSX is split into HLE (Hardware Lock Elision) and RTM (Restricted Transactional Memory) detection.
+// So TSX simply checks that.
+func (c CPUInfo) TSX() bool {
+ return c.Features&(HLE|RTM) == HLE|RTM
+}
+
+// Atom indicates an Atom processor
+func (c CPUInfo) Atom() bool {
+ return c.Features&ATOM != 0
+}
+
+// Intel returns true if vendor is recognized as Intel
+func (c CPUInfo) Intel() bool {
+ return c.VendorID == Intel
+}
+
+// AMD returns true if vendor is recognized as AMD
+func (c CPUInfo) AMD() bool {
+ return c.VendorID == AMD
+}
+
+// Hygon returns true if vendor is recognized as Hygon
+func (c CPUInfo) Hygon() bool {
+ return c.VendorID == Hygon
+}
+
+// Transmeta returns true if vendor is recognized as Transmeta
+func (c CPUInfo) Transmeta() bool {
+ return c.VendorID == Transmeta
+}
+
+// NSC returns true if vendor is recognized as National Semiconductor
+func (c CPUInfo) NSC() bool {
+ return c.VendorID == NSC
+}
+
+// VIA returns true if vendor is recognized as VIA
+func (c CPUInfo) VIA() bool {
+ return c.VendorID == VIA
+}
+
+// RTCounter returns the 64-bit time-stamp counter
+// Uses the RDTSCP instruction. The value 0 is returned
+// if the CPU does not support the instruction.
+func (c CPUInfo) RTCounter() uint64 {
+ if !c.RDTSCP() {
+ return 0
+ }
+ a, _, _, d := rdtscpAsm()
+ return uint64(a) | (uint64(d) << 32)
+}
+
+// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
+// This variable is OS dependent, but on Linux contains information
+// about the current cpu/core the code is running on.
+// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
+func (c CPUInfo) Ia32TscAux() uint32 {
+ if !c.RDTSCP() {
+ return 0
+ }
+ _, _, ecx, _ := rdtscpAsm()
+ return ecx
+}
+
+// LogicalCPU will return the Logical CPU the code is currently executing on.
+// This is likely to change when the OS re-schedules the running thread
+// to another CPU.
+// If the current core cannot be detected, -1 will be returned.
+func (c CPUInfo) LogicalCPU() int {
+ if c.maxFunc < 1 {
+ return -1
+ }
+ _, ebx, _, _ := cpuid(1)
+ return int(ebx >> 24)
+}
+
+// hertz tries to compute the clock speed of the CPU. If leaf 15 is
+// supported, use it, otherwise parse the brand string. Yes, really.
+func hertz(model string) int64 {
+ mfi := maxFunctionID()
+ if mfi >= 0x15 {
+ eax, ebx, ecx, _ := cpuid(0x15)
+ if eax != 0 && ebx != 0 && ecx != 0 {
+ return int64((int64(ecx) * int64(ebx)) / int64(eax))
+ }
+ }
+ // computeHz determines the official rated speed of a CPU from its brand
+ // string. This insanity is *actually the official documented way to do
+ // this according to Intel*, prior to leaf 0x15 existing. The official
+ // documentation only shows this working for exactly `x.xx` or `xxxx`
+ // cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
+ // sizes.
+ hz := strings.LastIndex(model, "Hz")
+ if hz < 3 {
+ return -1
+ }
+ var multiplier int64
+ switch model[hz-1] {
+ case 'M':
+ multiplier = 1000 * 1000
+ case 'G':
+ multiplier = 1000 * 1000 * 1000
+ case 'T':
+ multiplier = 1000 * 1000 * 1000 * 1000
+ }
+ if multiplier == 0 {
+ return -1
+ }
+ freq := int64(0)
+ divisor := int64(0)
+ decimalShift := int64(1)
+ var i int
+ for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
+ if model[i] >= '0' && model[i] <= '9' {
+ freq += int64(model[i]-'0') * decimalShift
+ decimalShift *= 10
+ } else if model[i] == '.' {
+ if divisor != 0 {
+ return -1
+ }
+ divisor = decimalShift
+ } else {
+ return -1
+ }
+ }
+ // we didn't find a space
+ if i < 0 {
+ return -1
+ }
+ if divisor != 0 {
+ return (freq * multiplier) / divisor
+ }
+ return freq * multiplier
+}
+
+// VM Will return true if the cpu id indicates we are in
+// a virtual machine. This is only a hint, and will very likely
+// have many false negatives.
+func (c CPUInfo) VM() bool {
+ switch c.VendorID {
+ case MSVM, KVM, VMware, XenHVM, Bhyve:
+ return true
+ }
+ return false
+}
+
+// Flags contains detected cpu features and characteristics
+type Flags uint64
+
+// ArmFlags contains detected ARM cpu features and characteristics
+type ArmFlags uint64
+
+// String returns a string representation of the detected
+// CPU features.
+func (f Flags) String() string {
+ return strings.Join(f.Strings(), ",")
+}
+
+// Strings returns an array of the detected features.
+func (f Flags) Strings() []string {
+ r := make([]string, 0, 20)
+ for i := uint(0); i < 64; i++ {
+ key := Flags(1 << i)
+ val := flagNames[key]
+ if f&key != 0 {
+ r = append(r, val)
+ }
+ }
+ return r
+}
+
+// String returns a string representation of the detected
+// CPU features.
+func (f ArmFlags) String() string {
+ return strings.Join(f.Strings(), ",")
+}
+
+// Strings returns an array of the detected features.
+func (f ArmFlags) Strings() []string {
+ r := make([]string, 0, 20)
+ for i := uint(0); i < 64; i++ {
+ key := ArmFlags(1 << i)
+ val := flagNamesArm[key]
+ if f&key != 0 {
+ r = append(r, val)
+ }
+ }
+ return r
+}
+func maxExtendedFunction() uint32 {
+ eax, _, _, _ := cpuid(0x80000000)
+ return eax
+}
+
+func maxFunctionID() uint32 {
+ a, _, _, _ := cpuid(0)
+ return a
+}
+
+func brandName() string {
+ if maxExtendedFunction() >= 0x80000004 {
+ v := make([]uint32, 0, 48)
+ for i := uint32(0); i < 3; i++ {
+ a, b, c, d := cpuid(0x80000002 + i)
+ v = append(v, a, b, c, d)
+ }
+ return strings.Trim(string(valAsString(v...)), " ")
+ }
+ return "unknown"
+}
+
+func threadsPerCore() int {
+ mfi := maxFunctionID()
+ vend, _ := vendorID()
+
+ if mfi < 0x4 || (vend != Intel && vend != AMD) {
+ return 1
+ }
+
+ if mfi < 0xb {
+ if vend != Intel {
+ return 1
+ }
+ _, b, _, d := cpuid(1)
+ if (d & (1 << 28)) != 0 {
+ // v will contain logical core count
+ v := (b >> 16) & 255
+ if v > 1 {
+ a4, _, _, _ := cpuid(4)
+ // physical cores
+ v2 := (a4 >> 26) + 1
+ if v2 > 0 {
+ return int(v) / int(v2)
+ }
+ }
+ }
+ return 1
+ }
+ _, b, _, _ := cpuidex(0xb, 0)
+ if b&0xffff == 0 {
+ return 1
+ }
+ return int(b & 0xffff)
+}
+
+func logicalCores() int {
+ mfi := maxFunctionID()
+ v, _ := vendorID()
+ switch v {
+ case Intel:
+ // Use this on old Intel processors
+ if mfi < 0xb {
+ if mfi < 1 {
+ return 0
+ }
+ // CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
+ // that can be assigned to logical processors in a physical package.
+ // The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
+ _, ebx, _, _ := cpuid(1)
+ logical := (ebx >> 16) & 0xff
+ return int(logical)
+ }
+ _, b, _, _ := cpuidex(0xb, 1)
+ return int(b & 0xffff)
+ case AMD, Hygon:
+ _, b, _, _ := cpuid(1)
+ return int((b >> 16) & 0xff)
+ default:
+ return 0
+ }
+}
+
+func familyModel() (int, int) {
+ if maxFunctionID() < 0x1 {
+ return 0, 0
+ }
+ eax, _, _, _ := cpuid(1)
+ family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
+ model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
+ return int(family), int(model)
+}
+
+func physicalCores() int {
+ v, _ := vendorID()
+ switch v {
+ case Intel:
+ return logicalCores() / threadsPerCore()
+ case AMD, Hygon:
+ lc := logicalCores()
+ tpc := threadsPerCore()
+ if lc > 0 && tpc > 0 {
+ return lc / tpc
+ }
+ // The following is inaccurate on AMD EPYC 7742 64-Core Processor
+
+ if maxExtendedFunction() >= 0x80000008 {
+ _, _, c, _ := cpuid(0x80000008)
+ return int(c&0xff) + 1
+ }
+ }
+ return 0
+}
+
+// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
+var vendorMapping = map[string]Vendor{
+ "AMDisbetter!": AMD,
+ "AuthenticAMD": AMD,
+ "CentaurHauls": VIA,
+ "GenuineIntel": Intel,
+ "TransmetaCPU": Transmeta,
+ "GenuineTMx86": Transmeta,
+ "Geode by NSC": NSC,
+ "VIA VIA VIA ": VIA,
+ "KVMKVMKVMKVM": KVM,
+ "Microsoft Hv": MSVM,
+ "VMwareVMware": VMware,
+ "XenVMMXenVMM": XenHVM,
+ "bhyve bhyve ": Bhyve,
+ "HygonGenuine": Hygon,
+ "Vortex86 SoC": SiS,
+ "SiS SiS SiS ": SiS,
+ "RiseRiseRise": SiS,
+ "Genuine RDC": RDC,
+}
+
+func vendorID() (Vendor, string) {
+ _, b, c, d := cpuid(0)
+ v := string(valAsString(b, d, c))
+ vend, ok := vendorMapping[v]
+ if !ok {
+ return Other, v
+ }
+ return vend, v
+}
+
+func cacheLine() int {
+ if maxFunctionID() < 0x1 {
+ return 0
+ }
+
+ _, ebx, _, _ := cpuid(1)
+ cache := (ebx & 0xff00) >> 5 // cflush size
+ if cache == 0 && maxExtendedFunction() >= 0x80000006 {
+ _, _, ecx, _ := cpuid(0x80000006)
+ cache = ecx & 0xff // cacheline size
+ }
+ // TODO: Read from Cache and TLB Information
+ return int(cache)
+}
+
+func (c *CPUInfo) cacheSize() {
+ c.Cache.L1D = -1
+ c.Cache.L1I = -1
+ c.Cache.L2 = -1
+ c.Cache.L3 = -1
+ vendor, _ := vendorID()
+ switch vendor {
+ case Intel:
+ if maxFunctionID() < 4 {
+ return
+ }
+ for i := uint32(0); ; i++ {
+ eax, ebx, ecx, _ := cpuidex(4, i)
+ cacheType := eax & 15
+ if cacheType == 0 {
+ break
+ }
+ cacheLevel := (eax >> 5) & 7
+ coherency := int(ebx&0xfff) + 1
+ partitions := int((ebx>>12)&0x3ff) + 1
+ associativity := int((ebx>>22)&0x3ff) + 1
+ sets := int(ecx) + 1
+ size := associativity * partitions * coherency * sets
+ switch cacheLevel {
+ case 1:
+ if cacheType == 1 {
+ // 1 = Data Cache
+ c.Cache.L1D = size
+ } else if cacheType == 2 {
+ // 2 = Instruction Cache
+ c.Cache.L1I = size
+ } else {
+ if c.Cache.L1D < 0 {
+ c.Cache.L1I = size
+ }
+ if c.Cache.L1I < 0 {
+ c.Cache.L1I = size
+ }
+ }
+ case 2:
+ c.Cache.L2 = size
+ case 3:
+ c.Cache.L3 = size
+ }
+ }
+ case AMD, Hygon:
+ // Untested.
+ if maxExtendedFunction() < 0x80000005 {
+ return
+ }
+ _, _, ecx, edx := cpuid(0x80000005)
+ c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
+ c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
+
+ if maxExtendedFunction() < 0x80000006 {
+ return
+ }
+ _, _, ecx, _ = cpuid(0x80000006)
+ c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
+
+ // CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
+ if maxExtendedFunction() < 0x8000001D {
+ return
+ }
+ for i := uint32(0); i < math.MaxUint32; i++ {
+ eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
+
+ level := (eax >> 5) & 7
+ cacheNumSets := ecx + 1
+ cacheLineSize := 1 + (ebx & 2047)
+ cachePhysPartitions := 1 + ((ebx >> 12) & 511)
+ cacheNumWays := 1 + ((ebx >> 22) & 511)
+
+ typ := eax & 15
+ size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
+ if typ == 0 {
+ return
+ }
+
+ switch level {
+ case 1:
+ switch typ {
+ case 1:
+ // Data cache
+ c.Cache.L1D = size
+ case 2:
+ // Inst cache
+ c.Cache.L1I = size
+ default:
+ if c.Cache.L1D < 0 {
+ c.Cache.L1I = size
+ }
+ if c.Cache.L1I < 0 {
+ c.Cache.L1I = size
+ }
+ }
+ case 2:
+ c.Cache.L2 = size
+ case 3:
+ c.Cache.L3 = size
+ }
+ }
+ }
+
+ return
+}
+
+type SGXEPCSection struct {
+ BaseAddress uint64
+ EPCSize uint64
+}
+
+type SGXSupport struct {
+ Available bool
+ LaunchControl bool
+ SGX1Supported bool
+ SGX2Supported bool
+ MaxEnclaveSizeNot64 int64
+ MaxEnclaveSize64 int64
+ EPCSections []SGXEPCSection
+}
+
+func hasSGX(available, lc bool) (rval SGXSupport) {
+ rval.Available = available
+
+ if !available {
+ return
+ }
+
+ rval.LaunchControl = lc
+
+ a, _, _, d := cpuidex(0x12, 0)
+ rval.SGX1Supported = a&0x01 != 0
+ rval.SGX2Supported = a&0x02 != 0
+ rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
+ rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
+ rval.EPCSections = make([]SGXEPCSection, 0)
+
+ for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
+ eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
+ leafType := eax & 0xf
+
+ if leafType == 0 {
+ // Invalid subleaf, stop iterating
+ break
+ } else if leafType == 1 {
+ // EPC Section subleaf
+ baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
+ size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
+
+ section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
+ rval.EPCSections = append(rval.EPCSections, section)
+ }
+ }
+
+ return
+}
+
+func support() Flags {
+ mfi := maxFunctionID()
+ vend, _ := vendorID()
+ if mfi < 0x1 {
+ return 0
+ }
+ rval := uint64(0)
+ _, _, c, d := cpuid(1)
+ if (d & (1 << 15)) != 0 {
+ rval |= CMOV
+ }
+ if (d & (1 << 23)) != 0 {
+ rval |= MMX
+ }
+ if (d & (1 << 25)) != 0 {
+ rval |= MMXEXT
+ }
+ if (d & (1 << 25)) != 0 {
+ rval |= SSE
+ }
+ if (d & (1 << 26)) != 0 {
+ rval |= SSE2
+ }
+ if (c & 1) != 0 {
+ rval |= SSE3
+ }
+ if (c & (1 << 5)) != 0 {
+ rval |= VMX
+ }
+ if (c & 0x00000200) != 0 {
+ rval |= SSSE3
+ }
+ if (c & 0x00080000) != 0 {
+ rval |= SSE4
+ }
+ if (c & 0x00100000) != 0 {
+ rval |= SSE42
+ }
+ if (c & (1 << 25)) != 0 {
+ rval |= AESNI
+ }
+ if (c & (1 << 1)) != 0 {
+ rval |= CLMUL
+ }
+ if c&(1<<23) != 0 {
+ rval |= POPCNT
+ }
+ if c&(1<<30) != 0 {
+ rval |= RDRAND
+ }
+ if c&(1<<29) != 0 {
+ rval |= F16C
+ }
+ if c&(1<<13) != 0 {
+ rval |= CX16
+ }
+ if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
+ if threadsPerCore() > 1 {
+ rval |= HTT
+ }
+ }
+ if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
+ if threadsPerCore() > 1 {
+ rval |= HTT
+ }
+ }
+ // Check XGETBV, OXSAVE and AVX bits
+ if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
+ // Check for OS support
+ eax, _ := xgetbv(0)
+ if (eax & 0x6) == 0x6 {
+ rval |= AVX
+ if (c & 0x00001000) != 0 {
+ rval |= FMA3
+ }
+ }
+ }
+
+ // Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
+ if mfi >= 7 {
+ _, ebx, ecx, edx := cpuidex(7, 0)
+ eax1, _, _, _ := cpuidex(7, 1)
+ if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
+ rval |= AVX2
+ }
+ if (ebx & 0x00000008) != 0 {
+ rval |= BMI1
+ if (ebx & 0x00000100) != 0 {
+ rval |= BMI2
+ }
+ }
+ if ebx&(1<<2) != 0 {
+ rval |= SGX
+ }
+ if ebx&(1<<4) != 0 {
+ rval |= HLE
+ }
+ if ebx&(1<<9) != 0 {
+ rval |= ERMS
+ }
+ if ebx&(1<<11) != 0 {
+ rval |= RTM
+ }
+ if ebx&(1<<14) != 0 {
+ rval |= MPX
+ }
+ if ebx&(1<<18) != 0 {
+ rval |= RDSEED
+ }
+ if ebx&(1<<19) != 0 {
+ rval |= ADX
+ }
+ if ebx&(1<<29) != 0 {
+ rval |= SHA
+ }
+ if edx&(1<<26) != 0 {
+ rval |= IBPB
+ }
+ if ecx&(1<<30) != 0 {
+ rval |= SGXLC
+ }
+ if edx&(1<<27) != 0 {
+ rval |= STIBP
+ }
+
+ // Only detect AVX-512 features if XGETBV is supported
+ if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
+ // Check for OS support
+ eax, _ := xgetbv(0)
+
+ // Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
+ // ZMM16-ZMM31 state are enabled by OS)
+ /// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
+ if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
+ if ebx&(1<<16) != 0 {
+ rval |= AVX512F
+ }
+ if ebx&(1<<17) != 0 {
+ rval |= AVX512DQ
+ }
+ if ebx&(1<<21) != 0 {
+ rval |= AVX512IFMA
+ }
+ if ebx&(1<<26) != 0 {
+ rval |= AVX512PF
+ }
+ if ebx&(1<<27) != 0 {
+ rval |= AVX512ER
+ }
+ if ebx&(1<<28) != 0 {
+ rval |= AVX512CD
+ }
+ if ebx&(1<<30) != 0 {
+ rval |= AVX512BW
+ }
+ if ebx&(1<<31) != 0 {
+ rval |= AVX512VL
+ }
+ // ecx
+ if ecx&(1<<1) != 0 {
+ rval |= AVX512VBMI
+ }
+ if ecx&(1<<6) != 0 {
+ rval |= AVX512VBMI2
+ }
+ if ecx&(1<<8) != 0 {
+ rval |= GFNI
+ }
+ if ecx&(1<<9) != 0 {
+ rval |= VAES
+ }
+ if ecx&(1<<10) != 0 {
+ rval |= VPCLMULQDQ
+ }
+ if ecx&(1<<11) != 0 {
+ rval |= AVX512VNNI
+ }
+ if ecx&(1<<12) != 0 {
+ rval |= AVX512BITALG
+ }
+ if ecx&(1<<14) != 0 {
+ rval |= AVX512VPOPCNTDQ
+ }
+ // edx
+ if edx&(1<<8) != 0 {
+ rval |= AVX512VP2INTERSECT
+ }
+ // cpuid eax 07h,ecx=1
+ if eax1&(1<<5) != 0 {
+ rval |= AVX512BF16
+ }
+ }
+ }
+ }
+
+ if maxExtendedFunction() >= 0x80000001 {
+ _, _, c, d := cpuid(0x80000001)
+ if (c & (1 << 5)) != 0 {
+ rval |= LZCNT
+ rval |= POPCNT
+ }
+ if (d & (1 << 31)) != 0 {
+ rval |= AMD3DNOW
+ }
+ if (d & (1 << 30)) != 0 {
+ rval |= AMD3DNOWEXT
+ }
+ if (d & (1 << 23)) != 0 {
+ rval |= MMX
+ }
+ if (d & (1 << 22)) != 0 {
+ rval |= MMXEXT
+ }
+ if (c & (1 << 6)) != 0 {
+ rval |= SSE4A
+ }
+ if d&(1<<20) != 0 {
+ rval |= NX
+ }
+ if d&(1<<27) != 0 {
+ rval |= RDTSCP
+ }
+
+ /* Allow for selectively disabling SSE2 functions on AMD processors
+ with SSE2 support but not SSE4a. This includes Athlon64, some
+ Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
+ than SSE2 often enough to utilize this special-case flag.
+ AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
+ so that SSE2 is used unless explicitly disabled by checking
+ AV_CPU_FLAG_SSE2SLOW. */
+ if vend != Intel &&
+ rval&SSE2 != 0 && (c&0x00000040) == 0 {
+ rval |= SSE2SLOW
+ }
+
+ /* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
+ * used unless the OS has AVX support. */
+ if (rval & AVX) != 0 {
+ if (c & 0x00000800) != 0 {
+ rval |= XOP
+ }
+ if (c & 0x00010000) != 0 {
+ rval |= FMA4
+ }
+ }
+
+ if vend == Intel {
+ family, model := familyModel()
+ if family == 6 && (model == 9 || model == 13 || model == 14) {
+ /* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
+ * 6/14 (core1 "yonah") theoretically support sse2, but it's
+ * usually slower than mmx. */
+ if (rval & SSE2) != 0 {
+ rval |= SSE2SLOW
+ }
+ if (rval & SSE3) != 0 {
+ rval |= SSE3SLOW
+ }
+ }
+ /* The Atom processor has SSSE3 support, which is useful in many cases,
+ * but sometimes the SSSE3 version is slower than the SSE2 equivalent
+ * on the Atom, but is generally faster on other processors supporting
+ * SSSE3. This flag allows for selectively disabling certain SSSE3
+ * functions on the Atom. */
+ if family == 6 && model == 28 {
+ rval |= ATOM
+ }
+ }
+ }
+ return Flags(rval)
+}
+
+func valAsString(values ...uint32) []byte {
+ r := make([]byte, 4*len(values))
+ for i, v := range values {
+ dst := r[i*4:]
+ dst[0] = byte(v & 0xff)
+ dst[1] = byte((v >> 8) & 0xff)
+ dst[2] = byte((v >> 16) & 0xff)
+ dst[3] = byte((v >> 24) & 0xff)
+ switch {
+ case dst[0] == 0:
+ return r[:i*4]
+ case dst[1] == 0:
+ return r[:i*4+1]
+ case dst[2] == 0:
+ return r[:i*4+2]
+ case dst[3] == 0:
+ return r[:i*4+3]
+ }
+ }
+ return r
+}
+
+// Single-precision and double-precision floating point
+func (c CPUInfo) ArmFP() bool {
+ return c.Arm&FP != 0
+}
+
+// Advanced SIMD
+func (c CPUInfo) ArmASIMD() bool {
+ return c.Arm&ASIMD != 0
+}
+
+// Generic timer
+func (c CPUInfo) ArmEVTSTRM() bool {
+ return c.Arm&EVTSTRM != 0
+}
+
+// AES instructions
+func (c CPUInfo) ArmAES() bool {
+ return c.Arm&AES != 0
+}
+
+// Polynomial Multiply instructions (PMULL/PMULL2)
+func (c CPUInfo) ArmPMULL() bool {
+ return c.Arm&PMULL != 0
+}
+
+// SHA-1 instructions (SHA1C, etc)
+func (c CPUInfo) ArmSHA1() bool {
+ return c.Arm&SHA1 != 0
+}
+
+// SHA-2 instructions (SHA256H, etc)
+func (c CPUInfo) ArmSHA2() bool {
+ return c.Arm&SHA2 != 0
+}
+
+// CRC32/CRC32C instructions
+func (c CPUInfo) ArmCRC32() bool {
+ return c.Arm&CRC32 != 0
+}
+
+// Large System Extensions (LSE)
+func (c CPUInfo) ArmATOMICS() bool {
+ return c.Arm&ATOMICS != 0
+}
+
+// Half-precision floating point
+func (c CPUInfo) ArmFPHP() bool {
+ return c.Arm&FPHP != 0
+}
+
+// Advanced SIMD half-precision floating point
+func (c CPUInfo) ArmASIMDHP() bool {
+ return c.Arm&ASIMDHP != 0
+}
+
+// Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
+func (c CPUInfo) ArmASIMDRDM() bool {
+ return c.Arm&ASIMDRDM != 0
+}
+
+// Javascript-style double->int convert (FJCVTZS)
+func (c CPUInfo) ArmJSCVT() bool {
+ return c.Arm&JSCVT != 0
+}
+
+// Floatin point complex number addition and multiplication
+func (c CPUInfo) ArmFCMA() bool {
+ return c.Arm&FCMA != 0
+}
+
+// Weaker release consistency (LDAPR, etc)
+func (c CPUInfo) ArmLRCPC() bool {
+ return c.Arm&LRCPC != 0
+}
+
+// Data cache clean to Point of Persistence (DC CVAP)
+func (c CPUInfo) ArmDCPOP() bool {
+ return c.Arm&DCPOP != 0
+}
+
+// SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
+func (c CPUInfo) ArmSHA3() bool {
+ return c.Arm&SHA3 != 0
+}
+
+// SM3 instructions
+func (c CPUInfo) ArmSM3() bool {
+ return c.Arm&SM3 != 0
+}
+
+// SM4 instructions
+func (c CPUInfo) ArmSM4() bool {
+ return c.Arm&SM4 != 0
+}
+
+// SIMD Dot Product
+func (c CPUInfo) ArmASIMDDP() bool {
+ return c.Arm&ASIMDDP != 0
+}
+
+// SHA512 instructions
+func (c CPUInfo) ArmSHA512() bool {
+ return c.Arm&SHA512 != 0
+}
+
+// Scalable Vector Extension
+func (c CPUInfo) ArmSVE() bool {
+ return c.Arm&SVE != 0
+}
+
+// Generic Pointer Authentication
+func (c CPUInfo) ArmGPA() bool {
+ return c.Arm&GPA != 0
+}